Influence of Mo addition on the structural and electrochemical performance of Ni-rich cathode material for lithium-ion batteries

被引:0
|
作者
Tahir Sattar
Seung-Hwan Lee
Bong-Soo Jin
Hyun-Soo Kim
机构
[1] Next Generation Battery Research Center,
[2] Korea Electrotechnology Research Institute (KERI),undefined
[3] Electro-Functionality Materials Engineering,undefined
[4] University of Science and Technology (UST),undefined
[5] Faculty of Materials and Chemical Engineering,undefined
[6] Ghulam Ishaq Khan Institute of Engineering Sciences and Technology,undefined
[7] Topi,undefined
[8] Department of Advanced Materials Engineering,undefined
[9] Daejeon University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Molybdenum modified LiNi0.84Co0.11Mn0.05O2 cathode with different doping concentrations (0–5 wt.%) is successfully prepared and its electrochemical performances are investigated. It is demonstrated that molybdenum in LiNi0.84Co0.11Mn0.05O2 has a positive effect on structural stability and extraordinary electrochemical performances, including improved long-term cycling and high-rate capability. Among all samples, the 1 wt. % molybdenum LiNi0.84Co0.11Mn0.05O2 delivers superior initial discharge capacity of 205 mAh g−1 (0.1 C), cycling stability of 89.5% (0.5 C) and rate capability of 165 mAh g−1 (2 C) compared to those of others. Therefore, we can conclude that the 1 wt. % molybdenum is an effective strategy for Ni-rich LiNi0.84Co0.11Mn0.05O2 cathode used in lithium ion batteries.
引用
收藏
相关论文
共 50 条
  • [41] A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries
    Ryu, Hoon-Hee
    Park, Nam-Yung
    Seo, Jeong Hyun
    Yu, Young-Sang
    Sharma, Monika
    Muecke, Robert
    Kaghazchi, Payam
    Yoon, Chong S.
    Sun, Yang-Kook
    MATERIALS TODAY, 2020, 36 : 73 - 82
  • [42] A Perspective on the Requirements of Ni-rich Cathode Surface Modifications for Application in Lithium-ion Batteries and All-Solid-State Lithium-ion Batteries
    Choi, Jae Hong
    Embleton, Tom James
    Ko, Kyungmok
    Jang, Haeseong
    Son, Yoonkook
    Park, Joohyuk
    Lee, Songyi
    Oh, Pilgun
    CHEMELECTROCHEM, 2024, 11 (05)
  • [43] Oxygen Release in Ni-rich Layered Cathode for Lithium-ion Batteries: Mechanisms and Mitigating Strategies
    Chu, Youqi
    Mu, Yongbiao
    Zou, Lingfeng
    Wu, Fuhai
    Yang, Lin
    Feng, Yitian
    Zeng, Lin
    CHEMELECTROCHEM, 2024, 11 (14):
  • [44] Advancements and Challenges in High-Capacity Ni-Rich Cathode Materials for Lithium-Ion Batteries
    Ahangari, Mehdi
    Szalai, Benedek
    Lujan, Josue
    Zhou, Meng
    Luo, Hongmei
    MATERIALS, 2024, 17 (04)
  • [45] Fluorophenyl methyl sulfone as an interface modifier for Ni-rich cathode materials of lithium-ion batteries
    Lee, Subin
    Yim, Taeeun
    JOURNAL OF POWER SOURCES, 2022, 551
  • [46] A Hydridoaluminate Additive Producing a Protective Coating on Ni-Rich Cathode Materials in Lithium-Ion Batteries
    Forero-Saboya, Juan
    Moiseev, Ivan A.
    Vlara, Marina-Lamprini
    Foix, Dominique
    Deschamps, Michael
    Abakumov, Artem M.
    Tarascon, Jean-Marie
    Mariyappan, Sathiya
    ADVANCED ENERGY MATERIALS, 2024, 14 (34)
  • [47] Structure modification of Ni-rich layered oxide cathode toward advanced lithium-ion batteries
    Jiayi Wang
    Xincheng Lei
    Lin Gu
    Xin Wang
    Dong Su
    Journal of Materials Research, 2022, 37 : 3250 - 3268
  • [48] Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries
    Tahir Sattar
    Seong-Ju Sim
    Bong-Soo Jin
    Hyun-Soo Kim
    Scientific Reports, 11
  • [49] Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries
    Sattar, Tahir
    Sim, Seong-Ju
    Jin, Bong-Soo
    Kim, Hyun-Soo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [50] Fine-Tuned Synthesis for Reducing Residual Lithium in Ni-Rich Cathode Materials for Lithium-Ion Batteries
    Shim, Jae-Hyun
    Jung, Min-Hyoung
    Yang, Min-Ji
    Lee, Jaehan
    Kim, In
    Ahn, Young Ju
    Kim, Young-Min
    Lee, Sanghun
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 5952 - 5958