Symplectic, Orthogonal and Linear Lie Groups in Clifford Algebra

被引:0
作者
D. S. Shirokov
机构
[1] A.A. Kharkevich Institute for Information Transmission Problems,
[2] Russian Academy of Sciences,undefined
[3] N.E. Bauman Moscow State Technical University,undefined
来源
Advances in Applied Clifford Algebras | 2015年 / 25卷
关键词
Clifford algebra; symplectic group; orthogonal group; linear group; Lie group; Lie algebra; spin group;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove isomorphisms between 5 Lie groups (of arbitrary dimension and fixed signatures) in Clifford algebra and classical matrix Lie groups - symplectic, orthogonal and linear groups. Also we obtain isomorphisms of corresponding Lie algebras.
引用
收藏
页码:707 / 718
页数:11
相关论文
共 50 条
[31]   Classification of Lie algebras of specific type in complexified Clifford algebras [J].
Shirokov, D. S. .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (09) :1870-1887
[32]   A UNIFIED STUDY OF ORTHOGONAL POLYNOMIALS VIA LIE ALGEBRA [J].
Pathan, M. A. ;
Agarwal, Ritu ;
Jain, Sonal .
REPORTS ON MATHEMATICAL PHYSICS, 2017, 79 (01) :1-11
[33]   Clifford Algebra Realization of Certain Infinite-dimensional Lie Algebras [J].
Li, Li ;
Wang, Chunyan ;
Du, Xiufeng .
ALGEBRA COLLOQUIUM, 2011, 18 (01) :105-120
[34]   Pro ducts of unipotent elements of index 2 in orthogonal and symplectic groups [J].
Pazzis, Clement de Seguins .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 698 :406-447
[35]   SUPERCHARACTERS OF THE SYLOW p-SUBGROUPS OF THE FINITE SYMPLECTIC AND ORTHOGONAL GROUPS [J].
Andre, Carlos A. M. ;
Margarida Neto, Ana .
PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (02) :201-230
[36]   On the conjugacy classes in the orthogonal and symplectic groups over algebraically closed fields [J].
Gongopadhyay, Krishnendu .
EXPOSITIONES MATHEMATICAE, 2010, 28 (04) :351-356
[37]   Involutions of a Clifford Algebra Induced by Involutions of Orthogonal Group in Characteristic 2 [J].
Mahmoudi, M. G. ;
Nokhodkar, A. -H. .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) :3898-3919
[38]   Lie algebra and symplectic maps as mathematical frameworks for describing optical systems [J].
Reyes-de-Rueda, J ;
Sáenz, A ;
Silva, A ;
Castaño, VM .
OPTIK, 1999, 110 (11) :527-532
[39]   Connecting in the Dirac Equation the Clifford Algebra of Lorentz Invariance with the Lie Algebra of SU(N) Gauge Symmetry [J].
Marsch, Eckart ;
Narita, Yasuhito .
SYMMETRY-BASEL, 2021, 13 (03)
[40]   The Clifford algebra in the theory of algebras, quadratic forms, and classical groups [J].
Hahn, A .
CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 :305-322