Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review

被引:0
|
作者
Silvia Campagnini
Chiara Arienti
Michele Patrini
Piergiuseppe Liuzzi
Andrea Mannini
Maria Chiara Carrozza
机构
[1] IRCCS Fondazione Don Carlo Gnocchi Onlus,
[2] Scuola Superiore Sant’Anna,undefined
来源
Journal of NeuroEngineering and Rehabilitation | / 19卷
关键词
Automated pattern recognition; Clinical; Efficacy treatment; Machine learning; Prognosis; Regression analysis; Rehabilitation; Rehabilitation outcome; Stroke;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review
    Campagnini, Silvia
    Arienti, Chiara
    Patrini, Michele
    Liuzzi, Piergiuseppe
    Mannini, Andrea
    Carrozza, Maria Chiara
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2022, 19 (01)
  • [2] Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review
    Boukhennoufa, Issam
    Zhai, Xiaojun
    Utti, Victor
    Jackson, Jo
    McDonald-Maier, Klaus D.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [3] The effectiveness of robotic rehabilitation for the functional recovery of the upper limb in post-stroke patients: a systematic review
    Fiore, Stefano
    Battaglino, Andrea
    Sinatti, Pierluigi
    Sanchez-Romero, Eleuterio A.
    Ruiz-Rodriguez, Ivan
    Manca, Marcello
    Gargano, Stefano
    Villafane, Jorge Hugo
    RETOS-NUEVAS TENDENCIAS EN EDUCACION FISICA DEPORTE Y RECREACION, 2023, (50): : 91 - 101
  • [4] An Exploration of Machine Learning Methods for Predicting Post-stroke Aphasia Recovery
    Lai, Sha
    Billot, Anne
    Varkanitsa, Maria
    Braun, Emily J.
    Rapp, Brenda
    Parrish, Todd B.
    Kurani, Ajay S.
    Higgins, James
    Caplan, David
    Thompson, Cynthia K.
    Kiran, Swathi
    Betke, Margrit
    Ishwar, Prakash
    THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021, 2021, : 556 - 564
  • [5] A Success Story of Post-stroke Rehabilitation and Functional Recovery
    Penaranda, N.
    Coffey-Vega, K.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2015, 63 : S169 - S169
  • [6] A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery
    Khan, Muhammad Ahmed
    Fares, Hoda
    Ghayvat, Hemant
    Brunner, Iris Charlotte
    Puthusserypady, Sadasivan
    Razavi, Babak
    Lansberg, Maarten
    Poon, Ada
    Meador, Kimford Jay
    FRONTIERS IN NEUROLOGY, 2023, 14
  • [7] Machine learning in the prediction of post-stroke cognitive impairment: a systematic review and meta-analysis
    Li, XiaoSheng
    Chen, Zongning
    Jiao, Hexian
    Wang, BinYang
    Yin, Hui
    Chen, LuJia
    Shi, Hongling
    Yin, Yong
    Qin, Dongdong
    FRONTIERS IN NEUROLOGY, 2023, 14
  • [8] Machine Learning Algorithms for the Prediction of Language and Cognition Rehabilitation Outcomes of Post-stroke Patients: A Scoping Review
    Kyriakos Apostolidis
    Christos Kokkotis
    Serafeim Moustakidis
    Evangelos Karakasis
    Paraskevi Sakellari
    Christina Koutra
    Dimitrios Tsiptsios
    Stella Karatzetzou
    Konstantinos Vadikolias
    Nikolaos Aggelousis
    Human-Centric Intelligent Systems, 2024, 4 (1): : 147 - 160
  • [9] Rehabilitation methods for reducing shoulder subluxation in post-stroke hemiparesis: a systematic review
    Arya, Kamal Narayan
    Pandian, Shanta
    Vikas
    Puri, Vinod
    TOPICS IN STROKE REHABILITATION, 2018, 25 (01) : 68 - 81
  • [10] Systematic Review of Telestroke for Post-Stroke Care and Rehabilitation
    Mark N. Rubin
    Kay E. Wellik
    Dwight D. Channer
    Bart M. Demaerschalk
    Current Atherosclerosis Reports, 2013, 15