Jahn-Teller distortion driven magnetic polarons in magnetite

被引:0
|
作者
H. Y. Huang
Z. Y. Chen
R. -P. Wang
F. M. F. de Groot
W. B. Wu
J. Okamoto
A. Chainani
A. Singh
Z. -Y. Li
J. -S. Zhou
H. -T. Jeng
G. Y. Guo
Je-Geun Park
L. H. Tjeng
C. T. Chen
D. J. Huang
机构
[1] National Synchrotron Radiation Research Center,Department of Physics
[2] Program of Science and Technology of Synchrotron Light Source,Department of Mechanical Engineering
[3] National Tsing Hua University,Department of Physics
[4] National Tsing Hua University,Division of Physics
[5] Inorganic Chemistry and Catalysis,Department of Physics and Astronomy
[6] Utrecht University,undefined
[7] Texas Material Institute,undefined
[8] University of Texas at Austin,undefined
[9] National Taiwan University,undefined
[10] National Center for Theoretical Sciences,undefined
[11] Seoul National University,undefined
[12] Center for Correlated Electron Systems,undefined
[13] Institute for Basic Science,undefined
[14] Max Planck Institute for Chemical Physics of Solids,undefined
来源
Nature Communications | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The first known magnetic mineral, magnetite, has unusual properties, which have fascinated mankind for centuries; it undergoes the Verwey transition around 120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition, however, remains contentious. Here we use resonant inelastic X-ray scattering over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe2+ and Fe3+ states. Comparison of the experimental results with crystal-field multiplet calculations shows that the spin–orbital dd excitons of the Fe2+ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe2+O6 octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and are best explained as magnetic polarons.
引用
收藏
相关论文
共 50 条
  • [1] Jahn-Teller distortion driven magnetic polarons in magnetite
    Huang, H. Y.
    Chen, Z. Y.
    Wang, R. -P.
    de Groot, F. M. F.
    Wu, W. B.
    Okamoto, J.
    Chainani, A.
    Singh, A.
    Li, Z. -Y.
    Zhou, J. -S.
    Jeng, H. -T.
    Guo, G. Y.
    Park, Je-Geun
    Tjeng, L. H.
    Chen, C. T.
    Huang, D. J.
    NATURE COMMUNICATIONS, 2017, 8
  • [2] JAHN-TELLER DISTORTION IN MAGNETIC SPINELS
    MIYAHARA, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1962, 17 : 181 - &
  • [3] Superconductivity and Jahn-Teller Polarons in Titanates
    Arvids Stashans
    Henry Pinto
    Paul Sánchez
    Journal of Low Temperature Physics, 2003, 130 : 415 - 423
  • [4] Polarons and Bipolarons in Jahn-Teller Crystals
    Hori, Chishin
    Takada, Yasutami
    JAHN-TELLER EFFECT: FUNDAMENTALS AND IMPLICATIONS FOR PHYSICS AND CHEMISTRY, 2009, 97 : 841 - 871
  • [5] Polarons and solitons in Jahn-Teller systems
    Clougherty, Dennis P.
    JOURNAL OF MOLECULAR STRUCTURE, 2007, 838 (1-3) : 203 - 206
  • [6] Superconductivity and Jahn-Teller polarons in titanates
    Stashans, A
    Pinto, H
    Sánchez, P
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2003, 130 (3-4) : 415 - 423
  • [7] Jahn-Teller polarons in oxide perovskites
    Schirmer, OF
    FERROELECTRICS, 2004, 303 : 131 - 135
  • [8] JAHN-TELLER DISTORTION - MAGNETIC STUDIES OF VANADIUM TETRACHLORIDE
    JOHANNESEN, RB
    CANDELA, GA
    TSANG, T
    JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (12): : 5544 - +
  • [9] Large, small, and especially Jahn-Teller polarons
    Müller, KA
    JOURNAL OF SUPERCONDUCTIVITY, 1999, 12 (01): : 3 - 7
  • [10] Spin-driven Jahn-Teller distortion in a pyrochlore system
    Yamashita, Y
    Ueda, K
    PHYSICAL REVIEW LETTERS, 2000, 85 (23) : 4960 - 4963