Single MR-image super-resolution based on convolutional sparse representation

被引:1
|
作者
Shima Kasiri
Mehdi Ezoji
机构
[1] Babol Noshirvani University of Technology,Department of Electrical and Computer Engineering
来源
Signal, Image and Video Processing | 2020年 / 14卷
关键词
Super-resolution; Sparse representation; MRI; Convolutional sparse representation; Dictionary learning;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a method is proposed to achieve a high-resolution image from a low-resolution image. Because of the ill-posedness of the super-resolution problem, sparsity constraint is used as a prior, in this work. On the one hand, we use convolutional sparse representation on the whole image different from the patch-based method. On the other hand, we apply fewer filters even in smaller sizes for reconstructing the high-resolution image. Therefore, despite the reduced processing time, the reconstructed image quality is improved compared to the reference methods. In this work, the training images are different in terms of content from the testing images. Experimental results on a variety of MR images indicate improvement in the quality of the high-resolution MR image, in terms of qualitative and quantitative criteria.
引用
收藏
页码:1525 / 1533
页数:8
相关论文
共 50 条
  • [1] Single MR-image super-resolution based on convolutional sparse representation
    Kasiri, Shima
    Ezoji, Mehdi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (08) : 1525 - 1533
  • [2] Single image super-resolution based on sparse representation of wavelet coefficients
    Liao, X. (lxx0221@yahoo.com.cn), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [3] SINGLE IMAGE SUPER-RESOLUTION BASED ON NONLOCAL SIMILARITY AND SPARSE REPRESENTATION
    Li, Qian
    Lu, Zhenbo
    Sun, Cuirong
    Li, Houqiang
    Li, Weiping
    2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 156 - 160
  • [4] Optimized image super-resolution based on sparse representation
    Zhu, Yanming
    Jiang, Jianmin
    Li, Kun
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1052 - 1055
  • [5] Sparse Representation Based Face Image Super-Resolution
    Gao, Guangwei
    Yang, Jian
    INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 303 - 308
  • [6] Single Image Super-resolution Based on Residual Learning and Convolutional Sparse Coding
    Xie, Chao
    Jiang, Shengqin
    Lu, Xiaobo
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [7] Bidirectionally aligned sparse representation for single image super-resolution
    Xie, Chao
    Zeng, Weili
    Jiang, Shengqin
    Lu, Xiaobo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (07) : 7883 - 7907
  • [8] Single Image Super-Resolution via Classified Sparse Representation
    Lai, Chao
    Li, Fangzhao
    Li, Bao
    Jin, Shiyao
    2016 13TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (ICESS) - PROCEEDINGS, 2016, : 159 - 163
  • [9] Sparse representation with morphologic regularizations for single image super-resolution
    Li, Weirong
    Li, Shutao
    SIGNAL PROCESSING, 2014, 98 : 410 - 422
  • [10] Bidirectionally aligned sparse representation for single image super-resolution
    Chao Xie
    Weili Zeng
    Shengqin Jiang
    Xiaobo Lu
    Multimedia Tools and Applications, 2018, 77 : 7883 - 7907