Binary self-dual codes and Jacobi forms over a totally real subfield of Q(ζ8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\zeta _8)$$\end{document}

被引:0
作者
P. K. Ankur
机构
[1] VIT-AP University,Department of Mathematics (School of Advanced Sciences)
[2] Indian Institute of Technology(ISM),Department of Mathematics & Computing
关键词
Linear codes; Lattices; Jacobi forms; Theta series; Hilbert-Siegel modular forms; 06D50; 11F27; 11F46; 11F50; 94B05;
D O I
10.1007/s00200-021-00509-4
中图分类号
学科分类号
摘要
Let K=Q(ζ8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K={\mathbb {Q}}(\zeta _8)$$\end{document} be the complex multiplication field over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document} of extension degree 4. We give an integral lattice construction on Q(ζ8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\zeta _8)$$\end{document} induced from binary codes. We define a theta series using these lattices and discuss its relation with the complete weight enumerator of a binary code. If C is a binary Type II code of length l, we find that the complete weight enumerator of C gives a Jacobi form of weight l and the index 2l over the maximal totally real subfield k=Q(ζ8+ζ8-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k={\mathbb {Q}}(\zeta _8+\zeta _8^{-1})$$\end{document} of K. Also, we see that Hilbert-Siegel modular form of weight l and genus g can be seen in terms of the complete joint weight enumerator for codes Cj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_j$$\end{document}, 1≤j≤g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le j\le g$$\end{document} over F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_2$$\end{document}.
引用
收藏
页码:377 / 392
页数:15
相关论文
共 20 条
  • [1] Bachoc C(1997)Applications of coding theory to the construction of modular lattices J. Comb. Theory Ser. A 78 92-119
  • [2] Bannai E(1999)Type II codes, even unimodular lattices, and invariant rings IEEE Trans. Inf. Theory 45 1194-1205
  • [3] Dougherty ST(2004)Jacobi forms over totally real fields and Type II codes over Galois rings GR Eur. J. Comb. 25 475-486
  • [4] Harada M(2005)Codes over Eur. J. Comb. 26 629-650
  • [5] Oura M(2005), Jacobi forms and Hilbert-Siegel modular forms over Eur. J. Comb. 26 145-165
  • [6] Betsumiya K(2002)Codes over rings, complex lattices and Hermitian modular forms Ill. J. Math. 46 627-643
  • [7] Choie Y(2001)Jacobi forms over totally real fields and codes over J. Comb. Theory Ser. A 95 335-348
  • [8] Betsumiya K(2001)Codes over IEEE Trans. Inf. Theory 47 5397-267
  • [9] Choie Y(1984) and Jacobi forms of genus Sbornik Math. 47 237-89
  • [10] Choie Y(1996)The complete weight enumerator of Type II code over Results Math. 29 78-182