Initial boundary value problem for generalized boussinesque type equations with nonlinear source

被引:0
作者
A. I. Kozhanov
机构
[1] Siberian Division of the Russian Academy of Sciences,Institute of Mathematics
来源
Mathematical Notes | 1999年 / 65卷
关键词
initial boundary value problem; Boussinesque equation; comparison principle;
D O I
暂无
中图分类号
学科分类号
摘要
A comparison principle for solutions of the first initial boundary value problem for the generalized Boussinesque equation with a nonlinear sourceut-Δψ(u)-Δut+q(u)=0 is established. By using this comparison principle, we prove new existence and nonexistence theorems for solutions of the first initial boundary value problem in the case of power-law functions ψ (ξ) andq (ξ).
引用
收藏
页码:59 / 63
页数:4
相关论文
共 4 条
[1]  
Dzekker E. S.(1972)A generalization of the equation describing the motion of underground water with a free boundary Dokl. Akad. Nauk SSSR [Soviet. Math. Dokl.] 202 1031-1033
[2]  
Furaev V. Z.(1983)On global solvability of the first boundary value problem for the generalized Boussinesque equation Differentsial’nye Uravneiya [Differential Equations] 19 2014-2015
[3]  
Gladkov A. L.(1988)The Cauchy problem in the class of increasing functions for several nonlinear pseudoparabolic equations Differentsial’nye Uravneniya [Differential Equations] 24 277-288
[4]  
Kozhanov A. I.(1994)Parabolic equations with a nonlinear nonlocal source Sibirsk. Mat. Zh. [Siberian Math. J.] 35 1062-1073