Nonexistence and multiplicity of nontrivial solutions for some nonuniformly nonlinear systems

被引:0
作者
Afrouzi G.A. [1 ]
Naghizadeh Z. [1 ]
机构
[1] Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar
关键词
Minimum principle; Mountain pass theorem; Nonuniformly nonlinear system; Weak solution;
D O I
10.1007/s11587-012-0137-1
中图分类号
学科分类号
摘要
The goal of this paper is to study the nonexistence and multiplicity of nontrivial weak solutions for a class of nonlinear systems. The results are proved by Minimum principle and the Mountain pass theorem. © 2012 Università degli Studi di Napoli Federico II"."
引用
收藏
页码:19 / 32
页数:13
相关论文
共 11 条
[1]  
Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 4, pp. 349-381, (1973)
[2]  
Brezis H., Analyse Fonctionnelle: Theorie Et Applications, (1992)
[3]  
Chung N.T., Toan H.Q., On a class of degenerate and singular elliptic systems in bounded domains, J. Math. Anal. Appl., 360, pp. 422-431, (2009)
[4]  
Djellit A., Tas S., Existence of solutions for a class of elliptic systems in R<sup>N</sup> involving the p-Laplacian, Electron. J. Diff. Equ., 2003, pp. 1-8, (2003)
[5]  
Djellit A., Tas S., On some nonlinear elliptic systems, Nonlinear Anal., 59, pp. 695-706, (2004)
[6]  
Djellit A., Tas S., Quasilinear elliptic systems with critical Sobolev exponents in R<sup>N</sup>, Nonlinear Anal., 66, pp. 1485-1497, (2007)
[7]  
Drabek P., Stavrakakis N.M., Zographopoulos N.B., Multiple nonsemitrivial solutions for quasilinear systems, Diff. Integr. Equ., 16, 12, pp. 1519-1531, (2003)
[8]  
Hai D.D., Wang H., Nontrivial solutions for p-Laplacian systems, J. Math. Anal. Appl., 330, pp. 186-194, (2007)
[9]  
Struwe M., Multiple Nonsemitrivial Solutions for Quasilinear Systems. Variational Methods, (2008)
[10]  
Zhang J., Existence results for the positive solutions of nonlinear elliptic systems, Appl. Math. Com., 153, pp. 833-842, (2004)