Hydrodynamic limit for particle systems with nonconstant speed parameter

被引:0
作者
Paul Covert
Fraydoun Rezakhanlou
机构
[1] University of California,Department of Mathematics
来源
Journal of Statistical Physics | 1997年 / 88卷
关键词
Hydrodynamic limit; exclusion process; scalar conservation law;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the hydrodynamic limit for a class of particle systems on ℤd with nonconstant speed parameter, assuming that the speed parameter is continuously differentiable in the spatial variable. If the particle system is on the one-dimensional latticeℤ and totally asymmetric, we derive the hydrodynamic equation for continuous speed parameters. We obtain nontrivial upper and lower bounds when either the speed parameter is discontinuous or there is a blockage at a fixed site.
引用
收藏
页码:383 / 426
页数:43
相关论文
共 15 条
[1]  
Andjel E. D.(1982)Invariant measures for the zero range process Ann. Prob. 10 525-547
[2]  
Cocozza C. T.(1985)Processus des misanthropes Z. Wahrs. Verw. Gebiete 70 509-523
[3]  
DiPerna R. J.(1985)Measure-valued solutions to conservation laws Arch. Rational Mech. Anal. 88 223-270
[4]  
Evans L. C.(1984)Differential Games and Representation Formulas for Solution of Hamilton-Jacobi-Isaacs Equations Indiana Univ. Math. J. 33 773-797
[5]  
Souganidis P. E.(1992)Finite size effects and shock fluctuations in the asymmetric simple exclusion process Phys. Rev. A 45 618-625
[6]  
Janowsky S.(1994)Exact results for the asymmetric simple exclusion process with a blockage J. Stat. Phys. 77 35-51
[7]  
Lebowitz J.(1970)First order quaslinear equations is several independent variables Math. USSR-Sb. 10 217-243
[8]  
Janowsky S.(1993)Hydrodynamical limit for a Hamiltanian system with weak noise Commun. Math. Phys. 155 523-560
[9]  
Lebowitz J.(1991)Hydrodynamic limit for interacting particle systems on Z Commun. Math. Phys. 140 417-448
[10]  
Kružkov S. N.(1991)Relative entropy and hydrodynamics of Ginsburg-Landau models Letters Math. Phys. 22 63-80