On asymptotics of t-type regression estimation in multiple linear model

被引:0
作者
Hengjian Cui
机构
[1] Beijing Normal University,Department of Mathematics
来源
Science in China Series A: Mathematics | 2004年 / 47卷
关键词
t-type regression estimator; M-estimator; one-step estimate; consistency; asymptotic normality;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a robust estimator (t-type regression estimator) of multiple linear regression model by maximizing marginal likelihood of a scaled t-type error t-distribution. The marginal likelihood can also be applied to the de-correlated response when the within-subject correlation can be consistently estimated from an initial estimate of the model based on the independent working assumption. This paper shows that such a t-type estimator is consistent.
引用
收藏
页码:628 / 639
页数:11
相关论文
共 22 条
[1]  
He X.(1991)A local breakdown property of robust tests in linear regression Journal of Multivariate Analysis 38 294-305
[2]  
Maronna R. A(1981)Asymptotic behavior of general M-estimates for regression and scale with random carries Z. Wahr. Ver. Geb. 58 7-21
[3]  
Yohai V. J.(1992)On one-step GM estimates and stability of inferences in linear regression Journal of the American Statistical Association 87 439-450
[4]  
Simpson D. G.(1998)Functional stability of one-step GM-estimators in approximately linear regression Ann. Statist. 26 1147-1169
[5]  
Rupprt D.(2000)Breakdown points of t-type regression estimators Biometrika 87 675-687
[6]  
Carroll R. J.(2004)Longitudinal data analysis using t-type regression Journal of Statistical Planning and Inference 122 253-269
[7]  
Simpson D. G.(1977)Maximum likelihood from incomplete data via the EM algorithm (with Discussion) J. R. Statist. Soc. B39 1-38
[8]  
Yohai V. J.(1988)A test of missing completely at random for multivariate data with missing values J. Amer. Statist. Assoc. 83 1198-1202
[9]  
He X.(1989)Robust statistical modelling using the t-distribution J. Amer. Statist. Assoc. 84 881-896
[10]  
Simpson D. G.(1987)Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices Ann. Statist. 15 1269-1292