Infinitely Many Solutions for Schrödinger–Kirchhoff-Type Equations Involving the Fractional p(x, ·)-Laplacian

被引:0
作者
机构
[1] Department of Mathematics Education,
[2] Farhangian University,undefined
来源
Russian Mathematics | 2023年 / 67卷
关键词
fractional ; -Laplacian; Schrödinger–Kirchhoff-type problem; variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:67 / 77
页数:10
相关论文
共 38 条
[1]  
Bahrouni A.(2018)On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent Discrete Contin. Dyn. Syst. S 11 379-389
[2]  
Rădulescu V. D.(2017)Trace for fractional Sobolev spaces with variable exponents Adv. Oper. Theory 2 435-446
[3]  
Del Pezzo L.(2017)“Fractional Sobolev spaces with variable exponents and fractional Equations, No. 76 1-10
[4]  
Rossi J. D.(2004)( Not. Am. Math. Soc. 51 1336-1347
[5]  
Kaufmann U.(2004))-Laplacians,” Electron. J. Qualitative Theory Differ J. Phys. A: Math. Gen. 37 R161-R208
[6]  
Rossi J. D.(2000)Lévy processes—From probability to finance and quantum groups Phys. Lett. A 268 298-305
[7]  
Vidal R.(2002)The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics Phys. Rev. E 66 56108-1399
[8]  
Applebaum D.(2019)Fractional quantum mechanics and Lévy path integrals Complex Anal. Oper. Theory 13 1377-2048
[9]  
Metzler R.(2019)Fractional Schrödinger equation Appl. Anal. 100 2029-402
[10]  
Klafter J.(2019)On a nonlocal fractional Appl. Anal. 100 383-1173