Simulation of a Stationary Dark Soliton in a Trapped Zero-Temperature Bose-Einstein Condensate

被引:0
作者
Sadhan K. Adhikari
机构
[1] UNESP - São Paulo State University,Instituto de Física Teórica
来源
Journal of Low Temperature Physics | 2006年 / 143卷
关键词
Bose-Einstein Condensation; Gross-Pitaevskü Equation; Black soliton; Dark soliton; Numerical calculation; Optical-lattice potential;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss a computational mechanism for the generation of a stationary dark soliton, or black soliton, in a trapped Bose–Einstein condensate (BEC) using the Gross–Pitaevskii (GP) equation for both attractive and repulsive interaction. It is demonstrated that the black soliton with a “notch" in the probability density with a zero at the minimum is a stationary eigenstate of the GP equation and can be efficiently generated numerically as a nonlinear continuation of the first vibrational excitation of the GP equation in both attractive and repulsive cases in one and three dimensions for pure harmonic as well as harmonic plus optical-lattice traps. We also demonstrate the stability of this scheme under different perturbing forces.
引用
收藏
页码:267 / 281
页数:14
相关论文
共 114 条
  • [1] Denschlag J.(1999)undefined Science 83 97-undefined
  • [2] Simsarian J. E.(2001)undefined Phys. Rev. Lett 86 2926-undefined
  • [3] Feder D. L.(2002)undefined Nature (London) 296 150-undefined
  • [4] Clark C. W.(1998)undefined Phys. Rev. A 57 3837-undefined
  • [5] Collins L. A.(1997)undefined Phys. Rev, A 55 4338-undefined
  • [6] Cubizolles J.(1999)undefined Phys. Rev. A 60 R2665-undefined
  • [7] Deng L.(2000)undefined Phys. Rev. Lett 84 2298-undefined
  • [8] Hagley E. W.(2002)undefined Phys. Rev. A 66 053608-undefined
  • [9] Helmerson K.(1999)undefined Rev. Mod. Phys 71 463-undefined
  • [10] Reinhardt W. P.(2000)undefined Phys. Lett A 275 424-undefined