Trapped modes under interaction of elastic and electric fields in a piezoelectric waveguide

被引:0
|
作者
S. A. Nazarov
K. M. Ruotsalainen
M. Silvol
机构
[1] St. Petersburg State University,Institute for Problems in Mechanical Engineering
[2] St. Petersburg State Polytechnic University,undefined
[3] Russian Academy of Sciences,undefined
[4] University of Oulu,undefined
来源
Doklady Physics | 2015年 / 60卷
关键词
DOKLADY Physic; Trap Wave; Piezoelectric Module; Wave Trapping; Threshold Wave;
D O I
暂无
中图分类号
学科分类号
摘要
A sufficient condition for the existence of a trapped wave in a piezoelectric waveguide with a cavity is obtained by reducing the boundary-value problem to the self-adjoint operator in a specially constructed Hilbert space. It differs substantially from a similar condition for a pure elastic waveguide with a defect and, in particular, does not guarantee trapping of a wave by a crack. The examples of the damaged piezoelectric waveguides supporting trapped waves are given.
引用
收藏
页码:451 / 455
页数:4
相关论文
共 50 条
  • [31] Discrete propagation of trapped modes in acoustic waveguide arrays
    Moleron, Miguel
    Faure, Cedric
    Felix, Simon
    Pagneux, Vincent
    Richoux, Olivier
    PHYSICAL REVIEW B, 2019, 99 (20)
  • [32] Trapped modes in a non-axisymmetric cylindrical waveguide
    Lyapina, A. A.
    Pilipchuk, A. S.
    Sadreev, A. F.
    JOURNAL OF SOUND AND VIBRATION, 2018, 421 : 48 - 60
  • [33] Behavior of soft piezoelectric ceramics under high sinusoidal electric fields
    Kugel, VD
    Cross, LE
    JOURNAL OF APPLIED PHYSICS, 1998, 84 (05) : 2815 - 2830
  • [34] Electrical failure of piezoelectric ceramics with a conductive crack under electric fields
    Beom, H. G.
    Jeong, K. M.
    Park, J. Y.
    Lin, S.
    Kim, G. H.
    ENGINEERING FRACTURE MECHANICS, 2009, 76 (15) : 2399 - 2407
  • [36] The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials
    Ding, HJ
    Hou, PF
    Guo, FL
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (23) : 3201 - 3229
  • [37] Constructing a Trapped Mode at Low Frequencies in an Elastic Waveguide
    S. A. Nazarov
    Functional Analysis and Its Applications, 2020, 54 : 31 - 44
  • [38] Constructing a Trapped Mode at Low Frequencies in an Elastic Waveguide
    Nazarov, S. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (01) : 31 - 44
  • [39] Trapped modes for an elastic strip with perturbation of the material properties
    Foerster, C.
    Weidl, T.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2006, 59 (399-418): : 399 - 418
  • [40] Trapped modes in elastic plates, ocean and quantum waveguides
    Postnova, Julia
    Craster, Richard V.
    WAVE MOTION, 2008, 45 (04) : 565 - 579