Trapped modes under interaction of elastic and electric fields in a piezoelectric waveguide

被引:0
|
作者
S. A. Nazarov
K. M. Ruotsalainen
M. Silvol
机构
[1] St. Petersburg State University,Institute for Problems in Mechanical Engineering
[2] St. Petersburg State Polytechnic University,undefined
[3] Russian Academy of Sciences,undefined
[4] University of Oulu,undefined
来源
Doklady Physics | 2015年 / 60卷
关键词
DOKLADY Physic; Trap Wave; Piezoelectric Module; Wave Trapping; Threshold Wave;
D O I
暂无
中图分类号
学科分类号
摘要
A sufficient condition for the existence of a trapped wave in a piezoelectric waveguide with a cavity is obtained by reducing the boundary-value problem to the self-adjoint operator in a specially constructed Hilbert space. It differs substantially from a similar condition for a pure elastic waveguide with a defect and, in particular, does not guarantee trapping of a wave by a crack. The examples of the damaged piezoelectric waveguides supporting trapped waves are given.
引用
收藏
页码:451 / 455
页数:4
相关论文
共 50 条
  • [21] Asymmetric trapped modes in a tube waveguide with a bulge
    W. S. Li
    J. Zou
    K. Y. Lee
    X. F. Li
    Acta Mechanica, 2018, 229 : 1123 - 1136
  • [22] Trapped modes of an electromagnetic waveguide with an inhomogeneous filler
    Bogolyubov, AN
    Malykh, MD
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2005, 50 (02) : 201 - 204
  • [23] Asymmetric trapped modes in a tube waveguide with a bulge
    Li, W. S.
    Zou, J.
    Lee, K. Y.
    Li, X. F.
    ACTA MECHANICA, 2018, 229 (03) : 1123 - 1136
  • [24] Tubular channel growth in piezoelectric ceramics under electric fields
    Lin, S.
    Beom, H. G.
    Tao, D.
    ACTA MECHANICA, 2010, 210 (1-2) : 47 - 55
  • [25] Tubular channel growth in piezoelectric ceramics under electric fields
    S. Lin
    H. G. Beom
    D. Tao
    Acta Mechanica, 2010, 210 : 47 - 55
  • [26] The elastic and electric fields for elliptical hertzian contact for transversely isotropic piezoelectric bodies
    Ding, HJ
    Hou, PF
    Guo, FL
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1999, 66 (02): : 560 - 563
  • [27] The elastic and electric fields for elliptical hertzian contact for transversely isotropic piezoelectric bodies
    Cheng, Z.-Q.
    Batra, R.C.
    Journal of Applied Mechanics, Transactions ASME, 1999, 66 (02): : 563 - 565
  • [28] Elastic and electric fields for elliptical Hertzian contact for transversely isotropic piezoelectric bodies
    Zhejiang Univ, Hangzhou, China
    J Appl Mech Trans ASME, 2 (560-563):
  • [29] Elastic Modes of an Anisotropic Ridge Waveguide
    Galinde, Ameya
    Koochakzadeh, Masoud
    Abbaspour-Tamijani, Abbas
    ADVANCES IN ACOUSTICS AND VIBRATION, 2012, 2012
  • [30] Trapped modes in topographically varying elastic waveguides
    Postnova, Julia
    Craster, Richard V.
    WAVE MOTION, 2007, 44 (03) : 205 - 221