Ergodicity and Parameter Estimates for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process

被引:0
作者
Bohdan Maslowski
Jan Pospíšil
机构
[1] Czech Academy of Sciences,Institute of Mathematics
[2] University of West Bohemia,Faculty of Applied Sciences, Department of Mathematics
来源
Applied Mathematics and Optimization | 2008年 / 57卷
关键词
Stochastic partial differential equations; Fractional Brownian motion; Fractional Ornstein-Uhlenbeck process; Strictly stationary solution; Ergodicity; Parameter estimates;
D O I
暂无
中图分类号
学科分类号
摘要
Existence and ergodicity of a strictly stationary solution for linear stochastic evolution equations driven by cylindrical fractional Brownian motion are proved. Ergodic behavior of non-stationary infinite-dimensional fractional Ornstein-Uhlenbeck processes is also studied. Based on these results, strong consistency of suitably defined families of parameter estimators is shown. The general results are applied to linear parabolic and hyperbolic equations perturbed by a fractional noise.
引用
收藏
页码:401 / 429
页数:28
相关论文
共 40 条
[1]  
Alòs E.(2001)Stochastic calculus with respect to Gaussian processes Ann. Probab. 29 766-801
[2]  
Mazet O.(2005)The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise Stoch. Dyn. 5 45-64
[3]  
Nualart D.(1999)Stochastic analysis of the fractional Brownian motion Potential Anal. 10 177-214
[4]  
Caithamer P.(2002)Fractional Brownian motion and stochastic equations in Hilbert spaces Stoch. Dyn. 2 225-250
[5]  
Decreusefond L.(2005)Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise Stoch. Process. Appl. 115 1357-1383
[6]  
Üstünel A.S.(2002)Parameter estimation for controlled semilinear stochastic systems: identifiability and consistency J. Multivar. Anal. 80 322-343
[7]  
Duncan T.E.(1999)A parabolic stochastic differential equation with fractional Brownian motion input Stat. Probab. Lett. 41 337-346
[8]  
Maslowski B.(2001)Heat equations with fractional white noise potentials Appl. Math. Optim. 43 221-243
[9]  
Pasik-Duncan B.(2005)Integral transformations and anticipative calculus for fractional Brownian motions Mem. Am. Math. Soc. 175 viii+127-23
[10]  
Duncan T.E.(2004)General fractional multiparameter white noise theory and stochastic partial differential equations Commun. Partial Differ. Equ. 29 1-163