Open problems in Gaussian fluid queueing theory

被引:0
作者
K. Dȩbicki
M. Mandjes
机构
[1] University of Wrocław,Mathematical Institute
[2] University of Amsterdam,Korteweg
[3] Eindhoven University of Technology,de Vries Institute for Mathematics
[4] CWI,Eurandom
来源
Queueing Systems | 2011年 / 68卷
关键词
Buffer content process; Fractional Brownian motion; Gaussian processes; Queues; 60G15; 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
We present three challenging open problems that originate from the analysis of the asymptotic behavior of Gaussian fluid queueing models. In particular, we address the problem of characterizing the correlation structure of the stationary buffer content process, the speed of convergence to stationarity, and analysis of an asymptotic constant associated with the stationary buffer content distribution (the so-called Pickands constant).
引用
收藏
页码:267 / 273
页数:6
相关论文
共 45 条
  • [1] Abate J.(1988)The correlation function of RBM and Stoch. Models 4 315-359
  • [2] Whitt W.(2002)/ Probab. Math. Stat. 22 193-199
  • [3] Burnecki Z.(2002)/1 Stoch. Process. Appl. 98 151-174
  • [4] Michna Z.(2008)Simulation of Pickands constants Stat. Probab. Lett. 78 2046-2051
  • [5] Dȩbicki K.(2004)Ruin probabilities for Gaussian integrated processes Queueing Syst. 46 113-127
  • [6] Dȩbicki K.(1999)A note on upper estimates for Pickands constants Queueing Syst. 33 327-338
  • [7] Kisowski P.(2003)Traffic with an FBM limit: a convergence result Stoch. Models 19 407-423
  • [8] Dȩbicki K.(2009)Heavy traffic asymptotics of on-off fluid model Queueing Syst. 62 383-409
  • [9] Mandjes M.(2005)Simulation of the asymptotic constant in some fluid models Stoch. Process. Appl. 115 207-248
  • [10] Dȩbicki K.(2009)Transient characteristic of Gaussian fluid queues Stoch. Models 25 221-247