Error Propagation from Sleep Stage Classification to Derived Sleep Parameters in Machine Learning on Data from Wearables

被引:0
作者
Emil Hardarson
Anna Sigridur Islind
Erna Sif Arnardottir
María Óskarsdóttir
机构
[1] Reykjavik University,Department of Computer Science
[2] Reykjavik University,Reykjavik University Sleep Institute, School of Technology
来源
Current Sleep Medicine Reports | 2023年 / 9卷
关键词
Sleep; Sleep staging; Sleep parameters; Machine learning; Wearables;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:140 / 151
页数:11
相关论文
共 50 条
  • [31] Machine-Learning-Based-Approaches for Sleep Stage Classification Utilising a Combination of Physiological Signals: A Systematic Review
    Almutairi, Haifa
    Hassan, Ghulam Mubashar
    Datta, Amitava
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [32] A Study of Human Sleep Stage Classification Based on Dual Channels of EEG Signal Using Machine Learning Techniques
    Satapathy S.K.
    Loganathan D.
    [J]. SN Computer Science, 2021, 2 (3)
  • [33] Comparative analysis of sleep parameters and structures derived from wearable flexible electrode sleep patches and polysomnography in young adults
    Wang, Yuqi
    Zhou, Jing
    Zha, Fubing
    Zhou, Mingchao
    Li, Dongxia
    Zheng, Qian
    Chen, Shugeng
    Yan, Shuiping
    Geng, Xinling
    Long, Jianjun
    Wan, Li
    Wang, Yulong
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2024, 131 (04) : 738 - 749
  • [34] Machine learning for classification of stratified geology from MWD data
    Silversides, Katherine L.
    Melkumyan, Arman
    [J]. ORE GEOLOGY REVIEWS, 2022, 142
  • [35] A Machine Learning Approach to Crater Classification from Topographic Data
    Liu, Qiangyi
    Cheng, Weiming
    Yan, Guangjian
    Zhao, Yunliang
    Liu, Jianzhong
    [J]. REMOTE SENSING, 2019, 11 (21)
  • [36] Benchmarking framework for machine learning classification from fNIRS data
    Benerradi, Johann
    Clos, Jeremie
    Landowska, Aleksandra
    Valstar, Michel F.
    Wilson, Max L.
    [J]. FRONTIERS IN NEUROERGONOMICS, 2023, 4
  • [37] An electroencephalography-based sleep index and supervised machine learning as a suitable tool for automated sleep classification in children
    van Twist, Eris
    Hiemstra, Floor W.
    Cramer, Arnout B. G.
    Verbruggen, Sascha C. A. T.
    Tax, David M. J.
    Joosten, Koen
    Louter, Maartje
    Straver, Dirk C. G.
    de Hoog, Matthijs
    Kuiper, Jan Willem
    de Jonge, Rogier C. J.
    [J]. JOURNAL OF CLINICAL SLEEP MEDICINE, 2024, 20 (03): : 389 - 397
  • [38] Machine learning-empowered sleep staging classification using multi-modality signals
    Satapathy, Santosh Kumar
    Brahma, Biswajit
    Panda, Baidyanath
    Barsocchi, Paolo
    Bhoi, Akash Kumar
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [39] Classification of acute poisoning exposures with machine learning models derived from the National Poison Data System
    Mehrpour, Omid
    Hoyte, Christopher
    Delva-Clark, Heather
    Al Masud, Abdullah
    Biswas, Ashis
    Schimmel, Jonathan
    Nakhaee, Samaneh
    Goss, Foster
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2022, 131 (06) : 566 - 574
  • [40] Nocturnal Blood Pressure Estimation from Sleep Plethysmography Using Machine Learning
    Yilmaz, Gizem
    Lyu, Xingyu
    Ong, Ju Lynn
    Ling, Lieng Hsi
    Penzel, Thomas
    Yeo, B. T. Thomas
    Chee, Michael W. L.
    [J]. SENSORS, 2023, 23 (18)