A Faber-Krahn inequality for the Laplacian with Generalised Wentzell boundary conditions

被引:0
作者
James Kennedy
机构
[1] The University of Sydney,School of Mathematics and Statistics
来源
Journal of Evolution Equations | 2008年 / 8卷
关键词
35P15 (35J25, 35P05); Wentzell boundary conditions; Laplacian; Faber-Krahn inequality; Cheeger’s inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We give an extension of the Faber-Krahn inequality to the Laplacian Δ on bounded Lipschitz domains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb{R}}^N, N \geq 2$$\end{document}, with generalised Wentzell boundary conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u + \beta\frac{\partial u}{\partial v} + \gamma u = 0$$\end{document} on ∂Ω, where β, γ are nonzero real constants. We prove that when β, γ > 0, the ball B minimises the first eigenvalue with respect to all Lipschitz domains Ω of the same volume as B, and that B is the unique minimiser amongst C2-domains. We also consider β, γ not both positive, and slightly extend what is known about the associated Wentzell operator and its resolvent in addition to considering an analogue of the Faber-Krahn inequality. This is based on the recent extension of the Faber-Krahn inequality to the Robin Laplacian. We also give a version of Cheeger’s inequality for the Wentzell Laplacian when β, γ > 0.
引用
收藏
页码:557 / 582
页数:25
相关论文
empty
未找到相关数据