Parallel hybrid methods for generalized equilibrium problems and asymptotically strictly pseudocontractive mappings

被引:0
作者
Dang Van Hieu
机构
[1] Vietnam National University,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2017年 / 53卷
关键词
Hybrid method; Equilibrium problem; Strictly pseudocontractive mapping; Parallel computation; 65Y05; 91B50; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose two novel parallel hybrid methods for finding a common element of the set of solutions of a finite family of generalized equilibrium problems for monotone bifunctions fii=1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ f_i\right\} _{i=1}^N$$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-inverse strongly monotone operators Aii=1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ A_i\right\} _{i=1}^N$$\end{document} and the set of common fixed points of a finite family of (asymptotically) κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-strictly pseudocontractive mappings Sjj=1M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ S_j\right\} _{j=1}^M$$\end{document} in Hilbert spaces. The strong convergence theorems are established under the standard assumptions imposed on equilibrium bifunctions and operators. Some numerical examples are presented to illustrate the efficiency of the proposed parallel methods.
引用
收藏
页码:531 / 554
页数:23
相关论文
共 36 条
[1]  
Anh PK(2014)Parallel methods for regularizing systems of equations involving accretive operators Appl. Anal. 93 2136-2157
[2]  
Buong Ng(2014)Parallel hybrid methods for a finite family of relatively nonexpansive mappings Numer. Funct. Anal. Optim. 35 649-664
[3]  
Hieu DV(2015)Parallel and sequential hybrid methods for a finite family of asymptotically quasi J. Appl. Math. Comput. 48 241-263
[4]  
Anh PK(1994)-nonexpansive mappings Math. Stud. 63 123-145
[5]  
Chung CV(1967)From optimization and variational inequalities to equilibrium problems J. Math. Anal. Appl. 20 197-228
[6]  
Anh PK(2005)Construction of fixed points of nonlinear mappings in Hilbert space J. Nonlinear Convex Anal. 6 117-136
[7]  
Hieu DV(1972)Equilibrium programming in Hilbert spaces Proc. Am. Math. Soc. 35 171-174
[8]  
Blum E(2015)A fixed point theorem for asymptotically nonexpansive mappings J. Korean Math. Soc. 52 373-388
[9]  
Oettli W(1976)A parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert space Ekonomikai Matematicheskie Metody 12 747-756
[10]  
Browder FE(2011)The extragradient method for finding saddle points and other problems Acta Math. Sci. 31B 2041-2057