Schur convexity of the generalized geometric Bonferroni mean and the relevant inequalities

被引:0
作者
Huan-Nan Shi
Shan-He Wu
机构
[1] Longyan University,Department of Mathematics
[2] Beijing Union University,Department of Electronic Information
来源
Journal of Inequalities and Applications | / 2018卷
关键词
geometric Bonferroni mean; Schur’s condition; majorization relationship; inequality; 26E60; 26B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the Schur convexity, Schur geometric convexity and Schur harmonic convexity of the generalized geometric Bonferroni mean. Some inequalities related to the generalized geometric Bonferroni mean are established to illustrate the applications of the obtained results.
引用
收藏
相关论文
共 73 条
  • [1] Zhang XM(2007)Differential criterion of J. Appl. Anal. 13 197-208
  • [2] Yang ZH(2008)-dimensional geometrically convex functions J. Convex Anal. 15 707-718
  • [3] Chu Y(2010)The Schur geometrical convexity of the extended mean values Proc. A. Razmadze Math. Inst. 152 19-27
  • [4] Zhang XM(2011)Necessary and sufficient conditions for the Schur harmonic convexity of the generalized Muirhead mean Math. Nachr. 284 653-663
  • [5] Wang GD(2013)The Schur multiplicative and harmonic convexities of the complete symmetric function J. Inequal. Appl. 2013 349-358
  • [6] Chu YM(2014)Some new judgement theorems of Schur geometric and Schur harmonic convexities for a class of symmetric functions J. Math. Inequal. 8 37-46
  • [7] Xia WF(2010)Schur-convexity, Schur geometric and Schur harmonic convexities of dual form of a class symmetric functions Mat. Vesn. 62 561-570
  • [8] Chu YM(2007)The Schur-harmonic-convexity of dual form of the Hamy symmetric function J. Inequal. Appl. 2007 637-652
  • [9] Wang GD(2011)Schur-convexity of two types of one-parameter mean values in Math. Slovaca 61 219-224
  • [10] Zhang XH(2005) variables J. Math. Anal. Appl. 312 2721-2731