Linearly Bounded Conjugator Property for Mapping Class Groups

被引:0
|
作者
Jing Tao
机构
[1] University of Oklahoma,Department of Mathematics
来源
Geometric and Functional Analysis | 2013年 / 23卷
关键词
Conjugacy Class; Mapping Class; Word Problem; Mapping Class Group; Hyperbolic Group;
D O I
暂无
中图分类号
学科分类号
摘要
Given two conjugate mapping classes f and g, we produce a conjugating element ω such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\omega| \le K (|f| + |g|)}$$\end{document}, where | · | denotes the word metric with respect to a fixed generating set, and K is a constant depending only on the generating set. As a consequence, the conjugacy problem for mapping class groups is exponentially bounded.
引用
收藏
页码:415 / 466
页数:51
相关论文
共 50 条
  • [1] Linearly Bounded Conjugator Property for Mapping Class Groups
    Tao, Jing
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (01) : 415 - 466
  • [2] Bounded cohomology of subgroups of mapping class groups
    Bestvina, Mladen
    Fujiwara, Koji
    GEOMETRY & TOPOLOGY, 2002, 6 : 69 - 89
  • [3] Mapping class groups with the Rokhlin property
    Justin Lanier
    Nicholas G. Vlamis
    Mathematische Zeitschrift, 2022, 302 : 1343 - 1366
  • [4] Mapping class groups with the Rokhlin property
    Lanier, Justin
    Vlamis, Nicholas G.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (03) : 1343 - 1366
  • [5] Centroids and the rapid decay property in mapping class groups
    Behrstock, Jason A.
    Minsky, Yair N.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 : 765 - 784
  • [6] Bounded cohomology and non-uniform perfection of mapping class groups
    Endo, H
    Kotschick, D
    INVENTIONES MATHEMATICAE, 2001, 144 (01) : 169 - 175
  • [7] Bounded cohomology and non-uniform perfection of mapping class groups
    H. Endo
    D. Kotschick
    Inventiones mathematicae, 2001, 144 : 169 - 175
  • [8] Big Mapping Class Groups and the Co-Hopfian Property
    Aramayona, Javier
    Leininger, Christopher J.
    McLeay, Alan
    MICHIGAN MATHEMATICAL JOURNAL, 2024, 74 (02) : 253 - 281
  • [9] Mapping Class Groups
    Kim, Sang-hyun
    Koberda, Thomas
    Mj, Mahan
    FLEXIBILITY OF GROUP ACTIONS ON THE CIRCLE, 2019, 2231 : 93 - 96
  • [10] MAPPING CLASS GROUPS ARE AUTOMATIC
    Mosher, Lee
    MATHEMATICAL RESEARCH LETTERS, 1994, 1 (02) : 249 - 255