Dynamic multi-scale loss optimization for object detection

被引:0
作者
Yihao Luo
Xiang Cao
Juntao Zhang
Peng Cheng
Tianjiang Wang
Qi Feng
机构
[1] Huazhong University of Science and Technology,School of Computer Science and Technology
[2] Coolanyp Limited Liability Company,undefined
来源
Multimedia Tools and Applications | 2023年 / 82卷
关键词
Object detection; Multi-scale imbalance; Reinforcement learning; Multi-task;
D O I
暂无
中图分类号
学科分类号
摘要
With the continuous improvement of deep object detectors via advanced model architectures, imbalance problems in the training process have received more attention. It is a common paradigm in object detection frameworks to perform multi-scale detection. However, each scale is treated equally during training. In this paper, we carefully study the objective imbalance of multi-scale detector training. We argue that the loss in each scale level is neither equally important nor independent. Different from the existing solutions of setting multi-task weights, we dynamically optimize the loss weight of each scale level in the training process. Specifically, we propose an Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the statistical variance. Then we develop a novel Reinforcement Learning Optimization (RLO) to decide the weighting scheme probabilistically during training. It makes better utilization of multi-scale training loss without extra computational complexity and learnable parameters for backpropagation. Without bells and whistles, the proposed method improves ATSS by 0.9 AP on the MS COCO benchmark. And it achieves 82.1 mAP on Pascal VOC 2007 test set, which outperforms other reinforcement-learning-based methods.
引用
收藏
页码:2349 / 2367
页数:18
相关论文
共 50 条
  • [21] Depth-Constrained Network for Multi-Scale Object Detection
    Liu, Guohua
    Li, Yijun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (10)
  • [22] Exploring Multi-scale Deep Feature Fusion for Object Detection
    Zhang, Quan
    Lai, Jianhuang
    Xie, Xiaohua
    Zhu, Junyong
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 40 - 52
  • [23] Optimized YOLOv8 for multi-scale object detection
    Rasheed, Areeg Fahad
    Zarkoosh, M.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)
  • [24] Multi-Scale Feature Selective Matching Network for Object Detection
    Pei, Yuanhua
    Dong, Yongsheng
    Zheng, Lintao
    Ma, Jinwen
    MATHEMATICS, 2023, 11 (12)
  • [25] A Novel Multi-Scale Transformer for Object Detection in Aerial Scenes
    Lu, Guanlin
    He, Xiaohui
    Wang, Qiang
    Shao, Faming
    Wang, Hongwei
    Wang, Jinkang
    DRONES, 2022, 6 (08)
  • [26] Multi-scale Feature and Spatial Relation Inference for Object Detection
    Zhou, Tianyu
    Miao, Zhenjiang
    Wang, Jiaji
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 666 - 675
  • [27] Multi-scale object detection algorithm for ship intelligent navigation
    Xu H.
    Long Z.
    Feng H.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (05): : 50 - 55
  • [28] FPDT: a multi-scale feature pyramidal object detection transformer
    Huang, Kailai
    Wen, Mi
    Wang, Chen
    Ling, Lina
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (02)
  • [29] Object Detection Model Based on Multi-Scale Feature Integration
    Liu Wanjun
    Feng, Wang
    Qu Haicheng
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (23)
  • [30] Multi-Scale Cross Distillation for Object Detection in Aerial Images
    Wang, Kun
    Wang, Zi
    Li, Zhang
    Teng, Xichao
    Li, Yang
    COMPUTER VISION - ECCV 2024, PT XLIX, 2025, 15107 : 452 - 471