Decontamination of ambient RNA in single-cell RNA-seq with DecontX

被引:0
作者
Shiyi Yang
Sean E. Corbett
Yusuke Koga
Zhe Wang
W Evan Johnson
Masanao Yajima
Joshua D. Campbell
机构
[1] Boston University School of Medicine,Division of Computational Biomedicine, Department of Medicine
[2] Boston University,Department of Mathematics & Statistics
来源
Genome Biology | / 21卷
关键词
Bayesian mixture model; Decontamination; Single cell; scRNA-seq;
D O I
暂无
中图分类号
学科分类号
摘要
Droplet-based microfluidic devices have become widely used to perform single-cell RNA sequencing (scRNA-seq). However, ambient RNA present in the cell suspension can be aberrantly counted along with a cell’s native mRNA and result in cross-contamination of transcripts between different cell populations. DecontX is a novel Bayesian method to estimate and remove contamination in individual cells. DecontX accurately predicts contamination levels in a mouse-human mixture dataset and removes aberrant expression of marker genes in PBMC datasets. We also compare the contamination levels between four different scRNA-seq protocols. Overall, DecontX can be incorporated into scRNA-seq workflows to improve downstream analyses.
引用
收藏
相关论文
共 50 条
  • [31] Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data
    Huang, Qianhui
    Liu, Yu
    Du, Yuheng
    Garmire, Lana X.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (02) : 267 - 281
  • [32] Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists
    Zhu, Xun
    Wolfgruber, Thomas K.
    Tasato, Austin
    Arisdakessian, Cedric
    Garmire, David G.
    Garmire, Lana X.
    GENOME MEDICINE, 2017, 9
  • [33] Emerging deep learning methods for single-cell RNA-seq data analysis
    Zheng, Jie
    Wang, Ke
    QUANTITATIVE BIOLOGY, 2019, 7 (04) : 247 - 254
  • [34] NDRindex: a method for the quality assessment of single-cell RNA-Seq preprocessing data
    Xiao, Ruiyu
    Lu, Guoshan
    Guo, Wanqian
    Jin, Shuilin
    BMC BIOINFORMATICS, 2020, 21 (Suppl 16)
  • [35] NDRindex: a method for the quality assessment of single-cell RNA-Seq preprocessing data
    Ruiyu Xiao
    Guoshan Lu
    Wanqian Guo
    Shuilin Jin
    BMC Bioinformatics, 21
  • [36] Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig
    Shufang Cai
    Bin Hu
    Xiaoyu Wang
    Tongni Liu
    Zhuhu Lin
    Xian Tong
    Rong Xu
    Meilin Chen
    Tianqi Duo
    Qi Zhu
    Ziyun Liang
    Enru Li
    Yaosheng Chen
    Jianhao Li
    Xiaohong Liu
    Delin Mo
    BMC Biology, 21
  • [37] Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
    Liu, Zhenqiu
    GENES, 2021, 12 (02) : 1 - 12
  • [38] Current annotation strategies for T cell phenotyping of single-cell RNA-seq data
    Mullan, Kerry A.
    de Vrij, Nicky
    Valkiers, Sebastiaan
    Meysman, Pieter
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [39] Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data
    Zhang, Yaru
    Ma, Yunlong
    Huang, Yukuan
    Zhang, Yan
    Jiang, Qi
    Zhou, Meng
    Su, Jianzhong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2953 - 2961
  • [40] Benchmarking UMI-based single-cell RNA-seq preprocessing workflows
    Yue You
    Luyi Tian
    Shian Su
    Xueyi Dong
    Jafar S. Jabbari
    Peter F. Hickey
    Matthew E. Ritchie
    Genome Biology, 22