Decontamination of ambient RNA in single-cell RNA-seq with DecontX

被引:0
|
作者
Shiyi Yang
Sean E. Corbett
Yusuke Koga
Zhe Wang
W Evan Johnson
Masanao Yajima
Joshua D. Campbell
机构
[1] Boston University School of Medicine,Division of Computational Biomedicine, Department of Medicine
[2] Boston University,Department of Mathematics & Statistics
来源
Genome Biology | / 21卷
关键词
Bayesian mixture model; Decontamination; Single cell; scRNA-seq;
D O I
暂无
中图分类号
学科分类号
摘要
Droplet-based microfluidic devices have become widely used to perform single-cell RNA sequencing (scRNA-seq). However, ambient RNA present in the cell suspension can be aberrantly counted along with a cell’s native mRNA and result in cross-contamination of transcripts between different cell populations. DecontX is a novel Bayesian method to estimate and remove contamination in individual cells. DecontX accurately predicts contamination levels in a mouse-human mixture dataset and removes aberrant expression of marker genes in PBMC datasets. We also compare the contamination levels between four different scRNA-seq protocols. Overall, DecontX can be incorporated into scRNA-seq workflows to improve downstream analyses.
引用
收藏
相关论文
共 50 条
  • [1] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Yang, Shiyi
    Corbett, Sean E.
    Koga, Yusuke
    Wang, Zhe
    Johnson, W. Evan
    Yajima, Masanao
    Campbell, Joshua D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [2] Evaluating imputation methods for single-cell RNA-seq data
    Yi Cheng
    Xiuli Ma
    Lang Yuan
    Zhaoguo Sun
    Pingzhang Wang
    BMC Bioinformatics, 24
  • [3] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [4] ascend: R package for analysis of single-cell RNA-seq data
    Senabouth, Anne
    Lukowski, Samuel W.
    Hernandez, Jose Alquicira
    Andersen, Stacey B.
    Mei, Xin
    Nguyen, Quan H.
    Powell, Joseph E.
    GIGASCIENCE, 2019, 8 (08):
  • [5] Improving replicability in single-cell RNA-Seq cell type discovery with Dune
    de Bezieux, Hector Roux
    Street, Kelly
    Fischer, Stephan
    Van den Berge, Koen
    Chance, Rebecca
    Risso, Davide
    Gillis, Jesse
    Ngai, John
    Purdom, Elizabeth
    Dudoit, Sandrine
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [6] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [7] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [8] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [9] Processing single-cell RNA-seq datasets using SingCellaR
    Wang, Guanlin
    Wen, Wei Xiong
    Mead, Adam J.
    Roy, Anindita
    Psaila, Bethan
    Thongjuea, Supat
    STAR PROTOCOLS, 2022, 3 (02):
  • [10] A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq
    Ye, Wenbin
    Lian, Qiwei
    Ye, Congting
    Wu, Xiaohui
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 67 - 83