Non-simply-connected symmetries in 6D SCFTs

被引:0
作者
Markus Dierigl
Paul-Konstantin Oehlmann
Fabian Ruehle
机构
[1] University of Pennsylvania,Department of Physics and Astronomy
[2] Uppsala University,Department of Physics and Astronomy
[3] CERN Theory Department,undefined
[4] 1 Esplanade des Particules,undefined
[5] Rudolf Peierls Centre for Theoretical Physics,undefined
[6] University of Oxford,undefined
[7] Department of Physics,undefined
来源
Journal of High Energy Physics | / 2020卷
关键词
F-Theory; Gauge Symmetry; Global Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
Six-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) superconformal field theories can be engineered geometrically via F-theory on elliptically-fibered Calabi-Yau 3-folds. We include torsional sections in the geometry, which lead to a finite Mordell-Weil group. This allows us to identify the full non-Abelian group structure rather than just the algebra. The presence of torsion also modifies the center of the symmetry groups and the matter representations that can appear. This in turn affects the tensor branch of these theories. We analyze this change for a large class of superconformal theories with torsion and explicitly construct their tensor branches. Finally, we elaborate on the connection to the dual heterotic and M-theory description, in which our configurations are interpreted as generalizations of discrete holonomy instantons.
引用
收藏
相关论文
共 162 条
[1]  
Nahm W(1978) 6d Nucl. Phys. B 135 149-undefined
[2]  
Witten E(1996) → Nucl. Phys. B 460 541-undefined
[3]  
Witten E(1995) = 1 Nucl. Phys. B 443 85-undefined
[4]  
Strominger A(1996)4 Phys. Lett. B 383 44-undefined
[5]  
Seiberg N(1996) = 1 Nucl. Phys. B 471 121-undefined
[6]  
Witten E(1996) 6 Nucl. Phys. B 474 122-undefined
[7]  
Ganor OJ(2015) (1 JHEP 11 123-undefined
[8]  
Hanany A(2016) 0) JHEP 08 070-undefined
[9]  
Del Zotto M(2017)4 JHEP 04 064-undefined
[10]  
Vafa C(2017) = 1 JHEP 06 022-undefined