A relaxation two-sweep modulus-based matrix splitting iteration method for horizontal linear complementarity problems

被引:0
作者
Zhengge Huang
Jingjing Cui
机构
[1] Guangxi Minzu University,Faculty of Science
来源
Japan Journal of Industrial and Applied Mathematics | 2023年 / 40卷
关键词
Horizontal linear complementarity problems; Modulus-based matrix splitting iteration method; Relaxation two-sweep technique; Convergence; 65F10; 65H10;
D O I
暂无
中图分类号
学科分类号
摘要
By utilizing the relaxation and two-sweep techniques to the modulus-based matrix splitting (MMS) method, we construct a relaxation two-sweep modulus-based matrix splitting (RTMMS) iteration method for solving the horizontal linear complementarity problems (HLCP) in this work. The proposed RTMMS iteration method includes the MMS one and generalizes the RTMMS one for the linear complementarity problem (LCP). In addition, we establish the convergence theories of the RTMMS method and its relaxed variant with the system matrices being H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{+}$$\end{document}-matrices. Numerical experiments validate that the RTMMS iteration method is efficient, and it can achieve higher computing efficiency compared with the MMS, accelerated MMS (AMMS) and two-step MMS (TMMS) ones.
引用
收藏
页码:141 / 182
页数:41
相关论文
共 58 条
[21]  
Mezzadri F(2015)-and Numer. Linear Algebra Appl. 85 1-21
[22]  
Galligani E(2020)-properties: extended vertical and horizontal linear complementarity problems Numer. Algorithms 57 83-99
[23]  
Peng XF(2011)Polynomial interior-point algorithms for Numer. Algorithms 160 189-203
[24]  
Wang M(2014) horizontal linear complementarity problem J. Optim. Theory Appl. 4 208-227
[25]  
Li W(1994)Modulus-based matrix splitting algorithms for the quasi-complementarity problems SIAM J. Optim. 74 137-152
[26]  
Ren H(2017)Two-sweep modulus-based matrix splitting iteration methods for linear complementarity problems Numer. Algorithms 369 124890-1810
[27]  
Wang X(2020)A preconditioned general modulus-based matrix splitting iteration method for linear complementarity problems of Appl. Math. Comput. 86 1791-262
[28]  
Tang X-B(2021)-matrices Numer. Algorithms 64 245-undefined
[29]  
Wang T(2013)Modified modulus-based matrix splitting iteration methods for linear complementarity problems Numer. Algorithms undefined undefined-undefined
[30]  
Sznajder R(undefined)A class of modified modulus-based synchronous multisplitting iteration methods for linear complementarity problems undefined undefined undefined-undefined