Homogeneous crystalline FeSi2 films of c (4 × 8) phase grown on Si (111) by reactive deposition epitaxy

被引:0
作者
Zou Z.-Q. [1 ,2 ]
Sun L.-M. [1 ]
Shi G.-M. [1 ]
Liu X.-Y. [1 ,2 ]
Li X. [1 ]
机构
[1] Center for Analysis and Testing, Shanghai Jiao Tong University, Shanghai 200240
[2] Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
来源
Zou, Z.-Q. (zqzou@sjtu.edu.cn) | 1600年 / Springer Science and Business Media, LLC卷 / 08期
基金
中国国家自然科学基金;
关键词
Iron silicides; Reactive deposition epitaxy; Scanning tunneling spectroscopy; Thin films; X-ray photoelectron spectroscopy;
D O I
10.1186/1556-276X-8-510
中图分类号
学科分类号
摘要
The growth of iron silicides on Si (111) using reactive deposition epitaxy method was studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS). Instead of the mixture of different silicide phases, a homogeneous crystalline film of c (4 × 8) phase was formed on the Si (111) surface at approximately 750°C. Scanning tunneling spectra show that the film exhibits a semiconducting character with a band gap of approximately 0.85 eV. Compared with elemental Fe, the Fe 2p peaks of the film exhibit a lower spin-orbit splitting (-0.3 eV) and the Fe 2p3/2 level has a smaller full-width at half maximum (-0.6 eV) and a higher binding energy (+0.3 eV). Quantitative XPS analysis shows that the c (4 × 8) phase is in the FeSi2 stoichiometry regime. The c (4 × 8) pattern could result from the ordered arrangement of defects of Fe vacancies in the buried Fe layers. © 2013 Zou et al.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 22 条
  • [1] Walter S., Bandorf R., Weiss W., Heinz K., Starke U., Strass M., Bockstedte M., Pankratov O., Chemical termination of the CsCl-structure FeSi/Si (111) film surface and its multilayer relaxation, Phys Rev B, 67, (2003)
  • [2] Krause M., Blobner F., Hammer L., Heinz K., Starke U., Homogeneous surface iron silicide formation on Si (111): The c (8 × 4) phase, Phys Rev B, 68, (2003)
  • [3] Garreau G., Hajjar S., Gewinner G., Pirri C., High resolution scanning tunneling spectroscopy of ultrathin iron silicide grown on Si (111): Origin of the c (4 × 8) long range order, Phys Rev B, 71, (2005)
  • [4] Kataoka K., Hattori K., Miyatake Y., Daimon H., Iron silicides grown by solid phase epitaxy on a Si (111) surface: Schematic phase diagram, Phys Rev B, 74, (2006)
  • [5] Wawro A., Suto S., Czajka R., Kasuya A., Thermal reaction of iron with a Si (111) vicinal surface: Surface ordering and growth of CsCl-type iron silicide, Phys Rev B, 67, (2003)
  • [6] Dahal N., Chikan V., Phase-controlled synthesis of iron silicide (Fe<sub>3</sub>Si and FeSi<sub>2</sub>) nanoparticles in solution, Chem Mater, 22, (2010)
  • [7] Gonzalez J.C., Miquita D.R., da Silva M.I.N., Magalhaes-Paniago R., Moreira M.V.B., de Oliveira A.G., Phase formation in iron silicide nanodots grown by reactive deposition epitaxy on Si (111), Phys Rev B, 81, (2010)
  • [8] Weiss W., Kutschera M., Starke U., Mozaffari M., Reshoft K., Kohler U., Heinz K., Development of structural phases of iron silicide films on Si(111) studied by LEED, AES and STM, AES and STM. Surf Sci, 377, (1997)
  • [9] Wallart X., Nys J.P., Tetelin C., Growth of ultrathin iron silicide films: Observation of the γ-FeSi<sub>2</sub>phase by electron spectroscopies, Phys Rev B, 49, (1994)
  • [10] Raunau W., Niehus H., Schilling T., Comsa G., Scanning tunneling microscopy and spectroscopy of iron silicide epitaxially grown on Si (111), Surf Sci, 286, (1993)