De Broglie wavelength of a non-local four-photon state

被引:0
作者
Philip Walther
Jian-Wei Pan
Markus Aspelmeyer
Rupert Ursin
Sara Gasparoni
Anton Zeilinger
机构
[1] Universität Wien,Institut für Experimentalphysik
[2] Institut für Quantenoptik und Quanteninformation,undefined
[3] Österreichische Akademie der Wissenschaften,undefined
[4] Physikalisches Institut,undefined
[5] Universität Heidelberg,undefined
来源
Nature | 2004年 / 429卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Superposition is one of the most distinctive features of quantum theory and has been demonstrated in numerous single-particle interference experiments1,2,3,4. Quantum entanglement5, the coherent superposition of states in multi-particle systems, yields more complex phenomena6,7. One important type of multi-particle experiment uses path-entangled number states, which exhibit pure higher-order interference and the potential for applications in metrology and imaging8; these include quantum interferometry and spectroscopy with phase sensitivity at the Heisenberg limit9,10,11,12, or quantum lithography beyond the classical diffraction limit13. It has been generally understood14 that in optical implementations of such schemes, lower-order interference effects always decrease the overall performance at higher particle numbers. Such experiments have therefore been limited to two photons15,16,17,18. Here we overcome this limitation, demonstrating a four-photon interferometer based on linear optics. We observe interference fringes with a periodicity of one-quarter of the single-photon wavelength, confirming the presence of a four-particle mode-entangled state. We anticipate that this scheme should be extendable to arbitrary photon numbers, holding promise for realizable applications with entanglement-enhanced performance.
引用
收藏
页码:158 / 161
页数:3
相关论文
共 69 条
[11]  
Schrödinger E(2000)Optimal frequency measurements with maximally correlated states Phys. Rev. Lett. 85 2733-2736
[12]  
Greenberger D(2002)Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit Phys. Rev. A 65 033820-568
[13]  
Horne M(1990)Broglie wavelength reduction for a multiphoton wave packet Phys. Rev. A 41 566-1351
[14]  
Zeilinger A(1990)Evidence for phase memory in two-photon down conversion through entanglement with the vacuum Phys. Rev. Lett. 65 1348-2965
[15]  
Yurke B(1990)Two-photon interference in a Mach-Zehnder interferometer Phys. Rev. A 42 2957-4838
[16]  
Ou ZY(2002)Experiment on nonclassical fourth-order interference Phys. Rev. Lett. 89 213601-2871
[17]  
Holland MJ(2002)Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion Phys. Rev. Lett. 74 4835-4341
[18]  
Burnett K(1999)Photonic de Broglie waves Phys. Rev. Lett. 82 2868-422
[19]  
Bollinger JJ(2001)Measurement of the de Broglie wavelength of a multiphoton wave packet Phys. Rev. A 64 063814-53
[20]  
Itano WM(2002)Generation of maximally entangled photonic states with a quantum-optical Fredkin gate Phys. Rev. A 65 052104-2924