A two-grid discretization scheme for the Steklov eigenvalue problem

被引:31
作者
Li Q. [1 ]
Yang Y. [1 ]
机构
[1] School of Mathematics and Computer Science, Guizhou Normal University
基金
中国国家自然科学基金;
关键词
Error estimates; Finite element; Steklov eigenvalue problem; Two-grid;
D O I
10.1007/s12190-010-0392-9
中图分类号
学科分类号
摘要
In the paper, a two-grid discretization scheme is discussed for the Steklov eigenvalue problem. With the scheme, the solution of the Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. Using spectral approximation theory, it is shown theoretically that the two-scale scheme is efficient and the approximate solution obtained by the scheme maintains the asymptotically optimal accuracy. Finally, numerical experiments are carried out to confirm the considered theory. © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:129 / 139
页数:10
相关论文
共 26 条
[1]  
Alonso A., Russo A.D., Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods, J. Comput. Appl. Math., 223, pp. 177-197, (2009)
[2]  
Andreev A.B., Todoro T.D., Isoparametric finite-element approximation of a Steklov eigenvalue problem, IMA Journal of Numerical Analysis, 24, 2, pp. 309-322, (2004)
[3]  
Armentano M.G., The effect of reduced integration in the Steklov eigenvalue problem, Mathematical Modelling and Numerical Analysis, 38, 1, pp. 27-36, (2004)
[4]  
Armentano M.G., Padra C., A posteriori error estimates for the Steklov eigenvalue problem, Applied Numerical Mathematics, 58, 5, pp. 593-601, (2008)
[5]  
Babuska I., Osborn J., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comput., 52, pp. 275-297, (1989)
[6]  
Babuska I., Osborn J., Eigenvalue problems. Finite Element Methods (Part 1), Handbook of Numerical Analysis, 2, pp. 640-787, (1991)
[7]  
Bergamann S., Schiffer M., Kernel Functions and Elliptic Differential Equations in Mathematics Physics, (1953)
[8]  
Bermudez A., Rodriguez R., Santamarina D., A finite element solution of an added mass formulation for coupled fluid-solid vibrations, Numerische Mathematik, 87, 2, pp. 201-228, (2000)
[9]  
Bramble J.H., Osborn J.E., Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, Math. Foundations of the Finite Element Method with Applications to PDE, pp. 387-408, (1972)
[10]  
Chen H.J., Liu F., Zhou A.H., A two-scale higher-order finite element discretization for Schrödinger Equation, J. Comput. Math., 27, pp. 315-337, (2009)