共 50 条
On the generalized associativity equation
被引:0
|作者:
Jean-Luc Marichal
Bruno Teheux
机构:
[1] University of Luxembourg,The Mathematics Research Unit, FSTC
来源:
Aequationes mathematicae
|
2017年
/
91卷
关键词:
Generalized associativity;
Functional equation;
Quasi-inverse;
39B52;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The so-called generalized associativity functional equation G(J(x,y),z)=H(x,K(y,z))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} G(J(x,y),z) = H(x,K(y,z)) \end{aligned}$$\end{document}has been investigated under various assumptions, for instance when the unknown functions G, H, J, and K are real, continuous, and strictly monotonic in each variable. In this note we investigate the following related problem: given the functions J and K, find every function F that can be written in the form F(x,y,z)=G(J(x,y),z)=H(x,K(y,z))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} F(x,y,z) = G(J(x,y),z) = H(x,K(y,z)) \end{aligned}$$\end{document}for some functions G and H. We show how this problem can be solved when any of the inner functions J and K has the same range as one of its sections.
引用
收藏
页码:265 / 277
页数:12
相关论文