Nonparametric geostatistical risk mapping

被引:0
|
作者
Rubén Fernández-Casal
Sergio Castillo-Páez
Mario Francisco-Fernández
机构
[1] Universidade da Coruña,Departamento de Matemáticas, Facultad de Informática
[2] Universidad de Vigo,Departamento de Estadística e Investigación Operativa
[3] Universidad de las Fuerzas Armadas ESPE,undefined
来源
Stochastic Environmental Research and Risk Assessment | 2018年 / 32卷
关键词
Local linear regression; Nonparametric estimation; Kriging; Bias-corrected variogram estimation; Bootstrap;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a fully nonparametric geostatistical approach to estimate threshold exceeding probabilities is proposed. To estimate the large-scale variability (spatial trend) of the process, the nonparametric local linear regression estimator, with the bandwidth selected by a method that takes the spatial dependence into account, is used. A bias-corrected nonparametric estimator of the variogram, obtained from the nonparametric residuals, is proposed to estimate the small-scale variability. Finally, a bootstrap algorithm is designed to estimate the unconditional probabilities of exceeding a threshold value at any location. The behavior of this approach is evaluated through simulation and with an application to a real data set.
引用
收藏
页码:675 / 684
页数:9
相关论文
共 50 条
  • [21] Nonparametric Estimation of Range Value at Risk
    Biswas, Suparna
    Sen, Rituparna
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 109 - 114
  • [22] Geostatistical Integration of Ground Survey Data and Secondary Data for Geological Thematic Mapping
    Park, No-Wook
    Jang, Dong-Ho
    Chi, Kwang-Hoon
    KOREAN JOURNAL OF REMOTE SENSING, 2006, 22 (06) : 581 - 593
  • [23] Climatized packing house with evaporative coolers- Part 2: Geostatistical mapping
    Miranda, Isadora B.
    Santos, italo E. dos A.
    Amorim, Magno do N.
    Turco, Silvia H. N.
    Lins, Ana C. de S. S.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2025, 29 (06):
  • [24] Digital soil mapping of sand content in arid western India through geostatistical approaches
    Santra, Priyabrata
    Kumar, Mahesh
    Panwar, Navraten
    GEODERMA REGIONAL, 2017, 9 : 56 - 72
  • [25] Mapping mean annual river discharges: Geostatistical developments for incorporating river network dependencies
    Sauquet, Eric
    JOURNAL OF HYDROLOGY, 2006, 331 (1-2) : 300 - 314
  • [26] Geostatistical space-time mapping of house prices using Bayesian maximum entropy
    Hayunga, Darren K.
    Kolovos, Alexander
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016, 30 (12) : 2339 - 2354
  • [27] EVALUATION OF STATISTICAL AND GEOSTATISTICAL MODELS OF DIGITAL SOIL PROPERTIES MAPPING IN TROPICAL MOUNTAIN REGIONS
    de Carvalho Junior, Waldir
    Chagas, Cesar da Silva
    Lagacherie, Philippe
    Calderano Filho, Braz
    Bhering, Silvio Barge
    REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2014, 38 (03): : 706 - 717
  • [28] Comparison between Geostatistical Interpolation and Numerical Weather Model Predictions for Meteorological Conditions Mapping
    Lopez Gomez, Javier
    Troncoso Pastoriza, Francisco
    Granada Alvarez, Enrique
    Eguia Oller, Pablo
    INFRASTRUCTURES, 2020, 5 (02)
  • [29] GEOSTATISTICAL APPROACH TO FIND 'HOTSPOTS' WHERE BIODIVERSITY IS AT RISK IN A TRANSITION COUNTRY
    Petrisor, Alexandru-Ionut
    Petrisor, Liliana
    PRESENT ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, 2014, 8 (02) : 151 - 162
  • [30] Entropic risk minimization for nonparametric estimation of mixing distributions
    Kazuho Watanabe
    Shiro Ikeda
    Machine Learning, 2015, 99 : 119 - 136