Nonparametric geostatistical risk mapping

被引:0
|
作者
Rubén Fernández-Casal
Sergio Castillo-Páez
Mario Francisco-Fernández
机构
[1] Universidade da Coruña,Departamento de Matemáticas, Facultad de Informática
[2] Universidad de Vigo,Departamento de Estadística e Investigación Operativa
[3] Universidad de las Fuerzas Armadas ESPE,undefined
来源
Stochastic Environmental Research and Risk Assessment | 2018年 / 32卷
关键词
Local linear regression; Nonparametric estimation; Kriging; Bias-corrected variogram estimation; Bootstrap;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a fully nonparametric geostatistical approach to estimate threshold exceeding probabilities is proposed. To estimate the large-scale variability (spatial trend) of the process, the nonparametric local linear regression estimator, with the bandwidth selected by a method that takes the spatial dependence into account, is used. A bias-corrected nonparametric estimator of the variogram, obtained from the nonparametric residuals, is proposed to estimate the small-scale variability. Finally, a bootstrap algorithm is designed to estimate the unconditional probabilities of exceeding a threshold value at any location. The behavior of this approach is evaluated through simulation and with an application to a real data set.
引用
收藏
页码:675 / 684
页数:9
相关论文
共 50 条
  • [1] Nonparametric geostatistical risk mapping
    Fernandez-Casal, Ruben
    Castillo-Paez, Sergio
    Francisco-Fernandez, Mario
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (03) : 675 - 684
  • [2] Nonparametric Conditional Risk Mapping Under Heteroscedasticity
    Rubén Fernández-Casal
    Sergio Castillo-Páez
    Mario Francisco-Fernández
    Journal of Agricultural, Biological and Environmental Statistics, 2024, 29 : 56 - 72
  • [3] Nonparametric Conditional Risk Mapping Under Heteroscedasticity
    Fernandez-Casal, Ruben
    Castillo-Paez, Sergio
    Francisco-Fernandez, Mario
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024, 29 (01) : 56 - 72
  • [4] Nonparametric bootstrap approach for unconditional risk mapping under heteroscedasticity
    Castillo-Paez, Sergio
    Fernandez-Casal, Ruben
    Garcia-Soidan, Pilar
    SPATIAL STATISTICS, 2020, 40
  • [5] Geostatistical risk mapping with chemical transport model output and ozone station data
    Wackernagel, H
    Lajaunie, C
    Blond, N
    Roth, C
    Vautard, R
    ECOLOGICAL MODELLING, 2004, 179 (02) : 177 - 185
  • [6] Non-stationary partition modeling of geostatistical data for malaria risk mapping
    Gosoniu, Laura
    Vounatsou, Penelope
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (01) : 3 - 13
  • [7] Radon risk mapping: A new geostatistical method based on Lorenz Curve and Gini index
    Loffredo, F.
    Scala, A.
    Serra, M.
    Quarto, M.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2021, 233
  • [8] AN ALGORITHM AND PASCAL PROGRAM FOR GEOSTATISTICAL MAPPING
    BERKOWITZ, B
    BENZVI, M
    COMPUTERS & GEOSCIENCES, 1991, 17 (04) : 489 - 503
  • [9] Factors affecting paddy soil arsenic concentration in Bangladesh: Prediction and uncertainty of geostatistical risk mapping
    Ahmed, Zia U.
    Panaullah, Golam M.
    DeGloria, Stephen D.
    Duxbury, John M.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2011, 412 : 324 - 335
  • [10] Developing geostatistical mapping tools for precision farming of rice
    Jahanshiri, E.
    Shariff, A. R. M.
    Khairunniza-Bejo, S.
    Wayayok, A.
    III INTERNATIONAL CONFERENCE ON AGRICULTURAL AND FOOD ENGINEERING, 2017, 1152 : 77 - 85