共 30 条
[21]
Ay M., Caydas U., Hascalik A., Effect of traverse speed on abrasive waterjet machining of age hardened Inconel 718 nickel-based super alloy, Mater. Manuf. Process., 25, pp. 1160-1165, (2010)
[22]
Azmir M.A., Ahsan A.K., Rahmah A., Effect of abrasive waterjet machining parameters on aramid fibre reinforced plastics composite, Int. J. Mater. Form., 2, pp. 37-44, (2009)
[23]
Aggarwal A., Singh H., Kumar P., Singh M., Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—a comparative analysis, J. Mater. Process. Technol., 200, pp. 373-384, (2008)
[24]
Krishnaiah K., Shahabudeen P., Applied design of experiments and Taguchi methods, (2012)
[25]
Derringer G., Suich R., Simultaneous optimization of several response variables, J. Q. Technol., 12, pp. 214-219, (1980)
[26]
Gopalakannan S., Senthilvelan T., Application of response surface method on machining of Al–SiC nano-composites, Measurement, 46, pp. 2705-2715, (2013)
[27]
Lin Y.C., Tsao C.C., Hsu C.Y., Hung S.K., Wen D.C., Evaluation of the characteristics of the microelectrical discharge machining process using response surface methodology based on the central composite design, Int. J. Adv. Manuf. Technol., 62, pp. 1013-1023, (2012)
[28]
Selvan M.C.P., Raju N.M.S., Sachidananda H.K., Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium, Front. Mech. Eng., 7, pp. 439-444, (2012)
[29]
Khan A., Awang M.E.B., Annuar A.A.B., Surface roughness of carbides produced by abrasive waterjet machining, J. Appl. Sci., 5, pp. 1757-1761, (2005)
[30]
Karakurt I., Aydin G., Aydiner K., An Experimental study on the depth of cut of granite in abrasive waterjet cutting, Mater. Manuf. Process., 27, pp. 538-544, (2012)