(g,f)-factorizations of graphs orthogonal to [1,2]-subgraph

被引:0
作者
Yan G. [1 ]
机构
[1] Institute of Applied Mathematics, Chinese Academy of Sciences
基金
中国博士后科学基金;
关键词
Factorization; Graph; Orthogonasl;
D O I
10.1007/BF02009545
中图分类号
学科分类号
摘要
Let G be a simple graph. Let g(x) and f(x) be integer-valued functions defined on V(G) with f(x)≥g(x)≥1 for all x∈V(G). It is proved that if G is an (mg+m-1,mf-m+1)-graph and H is a [1,2]-subgraph with m edges, then there exists a (g,f)-factorization of G orthogonal to H.
引用
收藏
页码:371 / 375
页数:4
相关论文
共 4 条
  • [1] Lovasz L., Subgraph with Prescribed Valencies, J. Comb. Theory, 8, pp. 391-416, (1970)
  • [2] Alspach B., Heinrich, Guizhen L., Contemporary Design Theory: A Collection of Surveys, pp. 13-37, (1992)
  • [3] Guizhen L., (g,f)-factorizations of Graphs Orthogonal to an m-star, Science in China (Series A), 38, 7, pp. 805-812, (1995)
  • [4] Guizhen L., Orthogonal (g,f)-factorizations in Graphs, Discrete Math., 43, pp. 153-158, (1995)