Positive Periodic Solutions of N-Species Neutral Delay Systems

被引:0
作者
Hui Fang
机构
[1] Kunming University of Science and Technology,Department of Systems Science and Applied Mathematics
[2] Kunming,Department of Applied Mathematics
[3] Hunan University,undefined
来源
Czechoslovak Mathematical Journal | 2003年 / 53卷
关键词
positive periodic solutions; existence; neutral delay system;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we employ some new techniques to study the existence of positive periodic solution of n-species neutral delay system Ni′ = Ni(t)[αi(t) — \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{j = 1}^n {\beta _{ij} } $$ \end{document}βij(t)Nj(t) — \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{j = 1}^n {b_{ij} } $$ \end{document}bij(t)Nj(t—τij(t))—\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{j = 1}^n {c_{ij} } $$ \end{document}cij(t)Nj′(t—τij(t))].
引用
收藏
页码:561 / 570
页数:9
相关论文
共 5 条
[1]  
Freedman H. I.(1992)Periodic solutions of single-species models with periodic delay SIAM J. Math. Anal. 23 689-701
[2]  
Wu J.(1993)A composite coincidence degree with applications to boundary value problems of neutral equations Trans. Amer. Math. Soc. 335 459-478
[3]  
Erbe L.(undefined)undefined undefined undefined undefined-undefined
[4]  
Krawcewicz W.(undefined)undefined undefined undefined undefined-undefined
[5]  
Wu J.(undefined)undefined undefined undefined undefined-undefined