Insider trading equilibrium in a market with memory

被引:0
作者
Francesca Biagini
Yaozhong Hu
Thilo Meyer-Brandis
Bernt Øksendal
机构
[1] Ludwig-Maximilians Universität,Department of Mathematics
[2] University of Kansas,Department of Mathematics
[3] University of Oslo,Center of Mathematics for Applications (CMA), Department of Mathematics
[4] Norwegian School of Economics and Business Administration,undefined
来源
Mathematics and Financial Economics | 2012年 / 6卷
关键词
Insider trading; Memory; Fractional Brownian motion; Filtering problem; Optimal expected wealth; C58; C61; C73; G11; G14; Primary 60G22; 91G80; Secondary 60G35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Kyle-Back model for insider trading, with the difference that the classical Brownian motion noise of the noise traders is replaced by the noise of a fractional Brownian motion BH with Hurst parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H>\frac{1}{2}}$$\end{document} (when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H=\frac{1}{2}, B^H}$$\end{document} coincides with the classical Brownian motion). Heuristically, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H>\frac{1}{2}}$$\end{document} this means that the noise traders has some “memory”, in the sense that any increment from time t on has a positive correlation with its value at t. (In other words, the noise trading is a persistent stochastic process). It also means that the paths of the noise trading process are more egular than in the classical Brownian motion case. We obtain an equation for the optimal (relative) trading intensity for the insider in this setting, and we show that when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H\rightarrow\frac{1}{2}}$$\end{document} the solution converges to the solution in the classical case. Finally, we discuss how the size of the Hurst coefficient H influences the optimal performance and portfolio of the insider.
引用
收藏
页码:229 / 247
页数:18
相关论文
共 7 条
[1]  
Back K.(1992)Insider trading in continuous time Rev. Financ. Stud. 5 387-409
[2]  
Kleptsyna M.L.(2000)General approach to filtering with fractional Brownian noises—application to linear systems Stoch. Stoch. Rep. 71 119-140
[3]  
Le Breton A.(1985)Continuous auctions and insider trading Econometrica 53 1315-1336
[4]  
Roubaud M.C.(2000)Stochastic calculus with respect to continuous finite quadratic variation processes Stoch. Stoch. Rep. 70 1-40
[5]  
Kyle A.S.(undefined)undefined undefined undefined undefined-undefined
[6]  
Russo F.(undefined)undefined undefined undefined undefined-undefined
[7]  
Vallois P.(undefined)undefined undefined undefined undefined-undefined