Noncommutative field theories on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R}_{\lambda}^3 $\end{document}: towards UV/IR mixing freedom

被引:0
作者
Patrizia Vitale
Jean-Christophe Wallet
机构
[1] Dipartimento di Scienze Fisiche Università di Napoli Federico II and INFN,Laboratoire de Physique Théorique, Bât. 210
[2] Sezione di Napoli,undefined
[3] CNRS and Université Paris-Sud 11,undefined
关键词
Non-Commutative Geometry; Field Theories in Lower Dimensions;
D O I
10.1007/JHEP04(2013)115
中图分类号
学科分类号
摘要
We consider the noncommutative space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R}_{\lambda}^3 $\end{document}, a deformation of the algebra of functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^3} $\end{document} which yields a “foliation” of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^3} $\end{document} into fuzzy spheres. We first construct a natural matrix base adapted to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R}_{\lambda}^3 $\end{document}. We then apply this general framework to the one-loop study of a two-parameter family of real-valued scalar noncommutative field theories with quartic polynomial interaction, which becomes a non-local matrix model when expressed in the above matrix base. The kinetic operator involves a part related to dynamics on the fuzzy sphere supplemented by a term reproducing radial dynamics. We then compute the planar and non-planar 1-loop contributions to the 2-point correlation function. We find that these diagrams are both finite in the matrix base. We find no singularity of IR type, which signals very likely the absence of UV/IR mixing. We also consider the case of a kinetic operator with only the radial part. We find that the resulting theory is finite to all orders in perturbation expansion.
引用
收藏
相关论文
共 193 条
[61]  
Wallet J-C(1994) and Int. J. Mod. Phys. A 9 5541-undefined
[62]  
Martin C(1992)Scaling limits of the fuzzy sphere at one loop J. Math. Phys. 33 1379-undefined
[63]  
Ruiz Ruiz F(1992)The WKB method in the Bargmann representation J. Phys. A 25 L1159-undefined
[64]  
Attems M(1993)Geometrical evaluation of star products Phys. Lett. B 304 89-undefined
[65]  
Blaschke D(1994)Twisted noncommutative field theory with the Wick-Voros and Moyal products Phys. Lett. B 323 153-undefined
[66]  
Ortner M(2003)Translation invariance, commutation relations and ultraviolet/infrared mixing JHEP 08 057-undefined
[67]  
Schweda M(2005)Inequivalence of QFT’s on noncommutative spacetimes: Moyal versus Wick-Voros JHEP 09 080-undefined
[68]  
Stricker S(2003)Twisted quantum fields on Moyal and Wick-Voros planes are inequivalent Mod. Phys. Lett. A 18 2381-undefined
[69]  
Blaschke D(2005)A unifying perspective on the Moyal and Voros products and their physical meanings Phys. Lett. A 334 1-undefined
[70]  
Hohenegger S(2007)A generalization of the Jordan-Schwinger map: classical version and its Phys. Lett. A 360 522-undefined