Noncommutative field theories on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R}_{\lambda}^3 $\end{document}: towards UV/IR mixing freedom

被引:0
作者
Patrizia Vitale
Jean-Christophe Wallet
机构
[1] Dipartimento di Scienze Fisiche Università di Napoli Federico II and INFN,Laboratoire de Physique Théorique, Bât. 210
[2] Sezione di Napoli,undefined
[3] CNRS and Université Paris-Sud 11,undefined
关键词
Non-Commutative Geometry; Field Theories in Lower Dimensions;
D O I
10.1007/JHEP04(2013)115
中图分类号
学科分类号
摘要
We consider the noncommutative space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R}_{\lambda}^3 $\end{document}, a deformation of the algebra of functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^3} $\end{document} which yields a “foliation” of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^3} $\end{document} into fuzzy spheres. We first construct a natural matrix base adapted to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{R}_{\lambda}^3 $\end{document}. We then apply this general framework to the one-loop study of a two-parameter family of real-valued scalar noncommutative field theories with quartic polynomial interaction, which becomes a non-local matrix model when expressed in the above matrix base. The kinetic operator involves a part related to dynamics on the fuzzy sphere supplemented by a term reproducing radial dynamics. We then compute the planar and non-planar 1-loop contributions to the 2-point correlation function. We find that these diagrams are both finite in the matrix base. We find no singularity of IR type, which signals very likely the absence of UV/IR mixing. We also consider the case of a kinetic operator with only the radial part. We find that the resulting theory is finite to all orders in perturbation expansion.
引用
收藏
相关论文
共 193 条
  • [1] Doplicher S(1994)Space-time quantization induced by classical gravity Phys. Lett. B 331 39-undefined
  • [2] Fredenhagen K(1986)Noncommutative geometry and string field theory Nucl. Phys. B 268 253-undefined
  • [3] Roberts J(1957)On distributions in representation space Sov. Phys. JETP 4 891-undefined
  • [4] Witten E(1989)The Moyal representation for spin Annals Phys. 190 107-undefined
  • [5] Stratonovich RL(1991)The commutative limit of a matrix geometry J. Math. Phys. 32 332-undefined
  • [6] Varilly JC(1992)A noncommutative version of the Schwinger model Phys. Lett. B 283 218-undefined
  • [7] Gracia-Bondia JM(1999)D-branes and deformation quantization JHEP 06 030-undefined
  • [8] Madore J(1999)String theory and noncommutative geometry JHEP 09 032-undefined
  • [9] Grosse H(2001)Quantum Hall physics equals noncommutative field theory JHEP 10 039-undefined
  • [10] Madore J(2003)Quantum Hall conductivity in a Landau type model with a realistic geometry Ann. Phys. 305 60-undefined