Lie group classification of the N-th-order nonlinear evolution equations

被引:0
作者
ShouFeng Shen
ChangZheng Qu
Qing Huang
YongYang Jin
机构
[1] Zhejiang University of Technology,Department of Applied Mathematics
[2] Ningbo University,Department of Mathematics
[3] Northwest University,Department of Mathematics
来源
Science China Mathematics | 2011年 / 54卷
关键词
group classification; Lie algebra; nonlinear evolution equation; 35M53; 37K30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, Lie group classification to the N-th-order nonlinear evolution equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t = u_{Nx} + F\left( {x,t,u,u_x , \ldots ,u_{\left( {N - 1} \right)x} } \right)$$\end{document} is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensional solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group so(3) as the symmetry group of the equation, and only two realizations of sl(2, ℝ) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones.
引用
收藏
页码:2553 / 2572
页数:19
相关论文
共 49 条
[1]  
Akhatov I.(1987)Group classification of equations of nonlinear filtration (in Russian) Proc Acad Sci USSR 293 1033-1035
[2]  
Gazizov R.(2001)The structure of Lie algebras and the classification problem for partial differential equations Acta Appl Math 69 43-94
[3]  
Ibragimov N.(2004)Optimal systems and group classification of (1+2)-dimensional heat equation Acta Appl Math 83 257-287
[4]  
Basarob-Horwath P.(1989)New similarity reductions of the Boussinesq equation J Math Phys 30 2201-2213
[5]  
Lahno V.(1994)Symmetry reduction and exact solution of the Navier-Stokes equations Int J Nonl Math Phys 1 75-113
[6]  
Zhdanov R.(1992)Symmetries of variable-coefficient Korteweg-de Vries equations J Math Phys 33 4087-4102
[7]  
Chou K. S.(2004)Symmetry classification of KdV-type nonlinear evolution equations J Math Phys 45 2280-2313
[8]  
Qu C. Z.(2009)Preliminary group classification of a class of fourth-order evolution equations J Math Phys 50 023503-366
[9]  
Clarkson P.(2010)Classification of local and non-local symmetries of fourth-order nonlinear evolution equations Rep Math Phys 65 337-2995
[10]  
Kruskal M.(1991)Preliminary group classification of equation J Math Phys 32 2988-313