On the persistent homology of almost surely C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document} stochastic processes

被引:0
作者
Daniel Perez
机构
[1] PSL University,Département de mathématiques et applications, École normale supérieure, CNRS
[2] Université Paris-Saclay,Laboratoire de mathématiques d’Orsay
[3] CNRS,DataShape
[4] Centre Inria Saclay,undefined
关键词
Persistent homology; Barcodes; Trees; Brownian motion; Stochastic processes; Markov processes; Rates of convergence; Random walks; Topological data analysis; 60Jxx; 60J65; 55N35; 33B10; 42A20;
D O I
10.1007/s41468-023-00132-x
中图分类号
学科分类号
摘要
This paper investigates the propreties of the persistence diagrams stemming from almost surely continuous random processes on [0, t]. We focus our study on two variables which together characterize the barcode: the number of points of the persistence diagram inside a rectangle ]-∞,x]×[x+ε,∞[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$]\!-\!\infty ,x]\times [x+\varepsilon ,\infty [$$\end{document}, Nx,x+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{x,x+\varepsilon }$$\end{document} and the number of bars of length ≥ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge \varepsilon $$\end{document}, Nε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^\varepsilon $$\end{document}. For processes with the strong Markov property, we show both of these variables admit a moment generating function and in particular moments of every order. Switching our attention to semimartingales, we show the asymptotic behaviour of Nε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^\varepsilon $$\end{document} and Nx,x+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{x,x+\varepsilon }$$\end{document} as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document} and of Nε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^\varepsilon $$\end{document} as ε→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow \infty $$\end{document}. Finally, we study the repercussions of the classical stability theorem of barcodes and illustrate our results with some examples, most notably Brownian motion and empirical functions converging to the Brownian bridge.
引用
收藏
页码:879 / 906
页数:27
相关论文
共 18 条
  • [1] Bretagnolle J(1989)Hungarian constructions from the nonasymptotic viewpoint Ann. Probab. 17 239-256
  • [2] Massart P(2013)The Brownian cactus I. Scaling limits of discrete cactuses Ann. Inst. H. Poincaré Probab. Stat. 49 340-373
  • [3] Curien N(2018)The fiber of the persistence map for functions on the interval J. Appl. Comput. Topol. 2 301-321
  • [4] Le Gall JF(2004)Probabilistic and fractal aspects of Lévy trees Probab. Theory Relat. Fields 131 553-603
  • [5] Miermont G(1975)An approximation of partial sums of independent RVs, and the sample DF. I Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 32 111-131
  • [6] Curry J(1976)An approximation of partial sums of independent RVs, and the sample DF. II Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 34 33-58
  • [7] Duquesne T(1989)Renewal property of the extrema and tree property of the excursion of a one-dimensional Brownian motion Sémin. Probab. Strasbg. 23 239-247
  • [8] Le Gall JF(2008)A tree approach to Ann. Probab. 36 2235-2279
  • [9] Komlós J(1944)-variation and to integration Bell Syst. Tech. J. 23 282-332
  • [10] Major P(undefined)Mathematical analysis of random noise undefined undefined undefined-undefined