Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist

被引:0
作者
Abdul-Majid Wazwaz
机构
[1] Saint Xavier University,Department of Mathematics
来源
Nonlinear Dynamics | 2017年 / 87卷
关键词
Fifth-order KdV equation; Dispersion relations; Multiple-soliton solutions;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we establish two wave modes for the integrable fifth-order Korteweg-de Vries (TfKdV) equations. We determine necessary conditions of the nonlinearity and dispersion parameters of the equation for multiple-soliton solutions to exist. We apply the simplified Hirota method to derive multiple-soliton solutions under these conditions. We also examine the dispersion relations and the phase shifts of the developed models.
引用
收藏
页码:1685 / 1691
页数:6
相关论文
共 39 条
[1]  
Korsunsky SV(1994)Soliton solutions for a second-order KdV equation Phys. Lett. A 185 174-176
[2]  
Lee C-T(2011)A Hamiltonian model and soliton phenomenon for a two-mode KdV equation Rocky Mt. J. Math. 41 1273-1289
[3]  
Liu J-L(2010)Quasi-solitons of the two-mode Korteweg-de Vries equation Eur. Phys. J. Appl. Phys. 52 11301-76
[4]  
Lee C-C(2013)On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system Waves Random Complex Media 23 56-639
[5]  
Lee C-T(1997)Solitary wave solutions having two wave modes of KdV-type and KdV-Burgers-type Chin. J. Phys. 35 633-426
[6]  
Liu J-L(2010)Solitary waves for power-law regularized long-wave equation and R(m, n) equation Nonlinear Dyn. 59 423-3742
[7]  
Huang W-Y(2009)Solitary waves of Boussinesq equation in a power law media Comm. Nonlinear Sci. Numer. Simul. 14 3738-426
[8]  
Lee CT(2010)Solitary waves for power-law regularized long wave equation and R(m, n) equation Nonlinear Dyn. 59 423-626
[9]  
Lee CC(2011)Stationary solitons for nonlinear dispersive Schrodinger’s equation Nonlinear Dyn. 63 623-27
[10]  
Zhu Z(1997)Symbolic methods to construct exact solutions of nonlinear partial differential equations Math. Comput. Simulat. 43 13-964