Hypergroups derived from random walks on some infinite graphs

被引:0
作者
Tomohiro Ikkai
Yusuke Sawada
机构
[1] Nagoya University,Graduate School of Mathematics
来源
Monatshefte für Mathematik | 2019年 / 189卷
关键词
Hermitian discrete hypergroups; Distance-regular graphs; Association schemes; Cayley graphs; Infinite graphs; Primary 43A62; Secondary 05C81;
D O I
暂无
中图分类号
学科分类号
摘要
Wildberger gave a method to construct a finite hermitian discrete hypergroup from a random walk on a certain kind of finite graphs. In this article, we reveal that his method is applicable to a random walk on certain kinds of infinite graphs. Moreover, we make some observations of finite or infinite graphs on which a random walk produces a hermitian discrete hypergroup.
引用
收藏
页码:321 / 353
页数:32
相关论文
共 7 条
  • [1] Dunkl CF(1973)The measure algebra of a locally compact hypergroup Trans. Am. Math. Soc. 179 331-348
  • [2] Jewett RI(1975)Spaces with an abstract convolution of measures Adv. Math. 18 1-101
  • [3] Lasser R(1983)Orthogonal polynomials and hypergroups Rend. Mat. Appl. 7 185-209
  • [4] Spector R(1978)Mesures invariantes sur les hypergroupes Trans. Am. Math. Soc. 239 147-165
  • [5] Tsurii T(2015)Deformations of the Chebyshev hypergroups Sci. Math. Jpn. (in Editione Electronica) 28 2015-2054
  • [6] Wildberger NJ(1995)Finite commutative hypergroups and applications from group theory to conformal eld theory Contemp. Math. 183 413-434
  • [7] Wildberger NJ(2002)Strong hypergroups of order three J. Pure Appl. Algebra 174 95-115