Evaluating the Generalization Ability of Support Vector Machines through the Bootstrap

被引:0
作者
Davide Anguita
Andrea Boni
Sandro Ridella
机构
[1] University of Genova,Dept. of Biophysical and Electronic Engineering
来源
Neural Processing Letters | 2000年 / 11卷
关键词
bootstrap; generalization; support vector machines; VC dimension;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known bounds on the generalizationability of learning machines, based on the Vapnik–Chernovenkis (VC) dimension,are very loose when applied to Support Vector Machines (SVMs).In this work we evaluate the validity of the assumption that these bounds are,nevertheless, good indicators of the generalization ability of SVMs.We show that this assumption is, in general, true and assessits correctness, in a statistical sense, on several pattern recognition benchmarks throughthe use of the bootstrap technique.
引用
收藏
页码:51 / 58
页数:7
相关论文
共 10 条
[1]  
Burges C. J. C.(1998)A tutorial on Support Vector Machines for pattern recognition Data Mining and Knowledge Discovery 2 1-47
[2]  
Cortes C.(1995)Support Vector Networks Machine Learning 20 1-25
[3]  
Vapnik V. N.(1998)Comparing supervised classification learning algorithms Neural Computation 10 1895-1923
[4]  
Dietterich T. G.(1998)Support Vector Machines IEEE Intelligent Systems 13 18-28
[5]  
Hearst M. A.(1987)Bootstrap techniques for error estimation IEEE Trans. on PAMI 9 628-633
[6]  
Jain A. K.(1998)Characterization of the sonar signals benchmark Neural Processing Letters 7 1-4
[7]  
Dubes R. C.(undefined)undefined undefined undefined undefined-undefined
[8]  
Chen C. C.(undefined)undefined undefined undefined undefined-undefined
[9]  
Torres Moreno J. M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Gordon M. B.(undefined)undefined undefined undefined undefined-undefined