Excitons in artificial quantum dots in the weak spatial confinement regime

被引:0
|
作者
S. V. Zaitsev
M. K. Welsch
A. Forchel
G. Bacher
机构
[1] Russian Academy of Sciences,Institute of Solid State Physics
[2] Universität Würzburg,Technische Physik
[3] Universität Duisburg-Essen,Lehrstuhl für Werkstoffe der Elektrotechnik
关键词
73.21.La; 73.22.Dj; 81.07.Ta;
D O I
暂无
中图分类号
学科分类号
摘要
The exciton states in individual quantum dots prepared by the selective interdiffusion method in CdTe/CdMgTe quantum wells are studied by the methods of steady-state optical spectroscopy. The annealing-induced diffusion of Mg atoms inward to the bulk of the quantum well, which is significantly enhanced under the SiO2 mask, leads to a modulation of the bandgap width in the plane of the well, with the minima of the potential being located in the mask aperture areas. A lateral potential that arises, whose height is in the range 30–270 meV and characteristic scale is about 100 nm, efficiently localizes carriers, which form quasi-zero-dimensional excitons in the weak spatial confinement regime. Detailed magnetooptical studies show that Coulomb correlations play a significant role in the formation of exciton states under such a regime, which, in particular, manifests itself in the localization of the wavefunction of carriers on scales that are considerably smaller than the scale of the lateral potential. The particular features of the interlevel splitting, of the biexciton binding energy, and of the diamagnetic shift are discussed. A strong dependence of the interlevel relaxation on the interlevel splitting (the phonon neck) indicates that alternative relaxation mechanisms in the quantum dots studied are weak. The excited states are populated according to the Pauli principle, which indicates that it is possible to apply the shell model of many-exciton states to quantum dots under the weak spatial confinement conditions.
引用
收藏
页码:1241 / 1258
页数:17
相关论文
共 50 条
  • [1] Excitons in artificial quantum dots in the weak spatial confinement regime
    Zaitsev, S. V.
    Welsch, M. K.
    Forchel, A.
    Bacher, G.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2007, 105 (06) : 1241 - 1258
  • [2] Properties of Excitons in Quantum Dots with a Weak Confinement
    Golasa, K.
    Molas, M.
    Goryca, M.
    Kazimierczuk, T.
    Smolenski, T.
    Koperski, M.
    Golnik, A.
    Kossacki, P.
    Potemski, M.
    Wasilewski, Z. R.
    Babinski, A.
    ACTA PHYSICA POLONICA A, 2013, 124 (05) : 781 - 784
  • [4] CONFINEMENT OF EXCITONS IN QUANTUM DOTS
    EINEVOLL, GT
    PHYSICAL REVIEW B, 1992, 45 (07): : 3410 - 3417
  • [5] Biexciton and triexciton states in quantum dots in the weak confinement regime
    Ikezawa, M
    Masumoto, Y
    Takagahara, T
    Nair, SV
    PHYSICAL REVIEW LETTERS, 1997, 79 (18) : 3522 - 3525
  • [6] EXCITONS IN QUANTUM DOTS WITH PARABOLIC CONFINEMENT
    QUE, WM
    PHYSICAL REVIEW B, 1992, 45 (19): : 11036 - 11041
  • [7] Confinement of excitons in spherical quantum dots
    Marin, JL
    Riera, R
    Cruz, SA
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (06) : 1349 - 1361
  • [8] Toward weak confinement regime in epitaxial nanostructures: Interdependence of spatial character of quantum confinement and wave function extension in large and elongated quantum dots
    Musial, A.
    Gold, P.
    Andrzejewski, J.
    Loeffler, A.
    Misiewicz, J.
    Hoefling, S.
    Forchel, A.
    Kamp, M.
    Sek, G.
    Reitzenstein, S.
    PHYSICAL REVIEW B, 2014, 90 (04):
  • [9] CDS QUANTUM DOTS IN THE WEAK CONFINEMENT
    WOGGON, U
    SALEH, M
    UHRIG, A
    PORTUNE, M
    KLINGSHIRN, C
    JOURNAL OF CRYSTAL GROWTH, 1994, 138 (1-4) : 988 - 992
  • [10] Excitons in ZnO Quantum Dots: The Role of Dielectric Confinement
    Garoufalis, Christos S.
    Zeng, Zaiping
    Bester, Gabriel
    Galanakis, Iosif
    Hayrapetyan, David
    Paspalakis, Emmanuel
    Baskoutas, Sotirios
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (05): : 2833 - 2838