Analysis of solution trajectories of fractional-order systems

被引:0
|
作者
Madhuri Patil
Sachin Bhalekar
机构
[1] Shivaji University,Department of Mathematics
[2] University of Hyderabad,School of mathematics and statistics
来源
Pramana | 2020年 / 94卷
关键词
Fractional derivative; Mittag–Leffler functions; Orthogonal transformation; Frenet apparatus; 05.45.–a; 02.40.–k; 45.30.+s;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of solution trajectories usually changes if we replace the classical derivative in a system with a fractional one. In this article, we throw light on the relation between two trajectories X(t) and Y(t) of such a system, where the initial point Y(0) is at some point X(t1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(t_1)$$\end{document} of the trajectory X(t). In contrast with classical systems, these trajectories X and Y do not follow the same path. Further, we provide a Frenet apparatus for both trajectories in various cases and discuss their effect.
引用
收藏
相关论文
共 50 条
  • [41] Dynamics of vector-borne diseases through the lens of systems incorporating fractional-order derivatives
    Skwara, Urszula
    Mozyrska, Dorota
    Aguiar, Maira
    Stollenwerk, Nico
    CHAOS SOLITONS & FRACTALS, 2024, 181
  • [42] A Discrete-Time Fractional-Order Flocking Control Algorithm of Multi-Agent Systems
    Chen, Haotian
    He, Ming
    Han, Wei
    Liu, Sicong
    Wei, Chenyue
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [43] New Criteria for Guaranteed Cost Control of Nonlinear Fractional-Order Delay Systems: a Razumikhin Approach
    Vu Ngoc Phat
    Mai Viet Thuan
    Tran Ngoc Tuan
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (02) : 403 - 415
  • [44] Radial fractional-order dispersion through fractured rock
    Benson, DA
    Tadjeran, C
    Meerschaert, MM
    Farnham, I
    Pohll, G
    WATER RESOURCES RESEARCH, 2004, 40 (12) : 1 - 9
  • [45] Fractional-order models: A new stage in modelling and control
    Podlubny, I
    SYSTEM STRUCTURE AND CONTROL 1998 (SSC'98), VOLS 1 AND 2, 1998, : 215 - 219
  • [46] Dynamic game problems of approach for fractional-order equations
    Éidel'Man S.D.
    Chikrii A.A.
    Ukrainian Mathematical Journal, 2000, 52 (11) : 1787 - 1806
  • [47] New Criteria for Guaranteed Cost Control of Nonlinear Fractional-Order Delay Systems: a Razumikhin Approach
    Vu Ngoc Phat
    Mai Viet Thuan
    Tran Ngoc Tuan
    Vietnam Journal of Mathematics, 2019, 47 : 403 - 415
  • [48] Notes on computational aspects of the fractional-order viscoelastic model
    Niedziela, Maciej
    Wlazlo, Jaroslaw
    JOURNAL OF ENGINEERING MATHEMATICS, 2018, 108 (01) : 91 - 105
  • [49] Settlement Analysis of Fractional-Order Generalised Kelvin Viscoelastic Foundation under Distributed Loads
    Huang, Bingcheng
    Lu, Aizhong
    Zhang, Ning
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [50] New Fractional Calculus and Application to the Fractional-order of Extended Biological Population Model
    Neirameh, Ahmad
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (03): : 115 - 128