Analysis of solution trajectories of fractional-order systems

被引:0
|
作者
Madhuri Patil
Sachin Bhalekar
机构
[1] Shivaji University,Department of Mathematics
[2] University of Hyderabad,School of mathematics and statistics
来源
Pramana | 2020年 / 94卷
关键词
Fractional derivative; Mittag–Leffler functions; Orthogonal transformation; Frenet apparatus; 05.45.–a; 02.40.–k; 45.30.+s;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of solution trajectories usually changes if we replace the classical derivative in a system with a fractional one. In this article, we throw light on the relation between two trajectories X(t) and Y(t) of such a system, where the initial point Y(0) is at some point X(t1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(t_1)$$\end{document} of the trajectory X(t). In contrast with classical systems, these trajectories X and Y do not follow the same path. Further, we provide a Frenet apparatus for both trajectories in various cases and discuss their effect.
引用
收藏
相关论文
共 50 条
  • [31] Sharp estimates for the unique solution of two-point fractional-order boundary value problems
    Ahmad, Bashir
    APPLIED MATHEMATICS LETTERS, 2017, 65 : 77 - 82
  • [32] Chaos control and function projective synchronization of fractional-order systems through the backstepping method
    S. Das
    V. K. Yadav
    Theoretical and Mathematical Physics, 2016, 189 : 1430 - 1439
  • [33] Synchronization between fractional-order Ravinovich-Fabrikant and Lotka-Volterra systems
    Agrawal, S. K.
    Srivastava, M.
    Das, S.
    NONLINEAR DYNAMICS, 2012, 69 (04) : 2277 - 2288
  • [34] Parameter estimation for fractional-order chaotic systems by improved bird swarm optimization algorithm
    Zhang, Pei
    Yang, Renyu
    Yang, Renhuan
    Ren, Gong
    Yang, Xiuzeng
    Xu, Chuangbiao
    Xu, Baoguo
    Zhang, Huatao
    Cai, Yanning
    Lu, Yaosheng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (11):
  • [35] CHAOS CONTROL AND FUNCTION PROJECTIVE SYNCHRONIZATION OF FRACTIONAL-ORDER SYSTEMS THROUGH THE BACKSTEPPING METHOD
    Das, S.
    Yadav, V. K.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 189 (01) : 1430 - 1439
  • [36] Fractional-order gradient approach for optimizing neural networks: A theoretical and empirical analysis
    Harjule, Priyanka
    Sharma, Rinki
    Kumar, Rajesh
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [37] Finite-time synchronization of fractional-order complex-valued coupled systems
    Xu, Yao
    Li, Wenxue
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 549
  • [38] Notes on computational aspects of the fractional-order viscoelastic model
    Maciej Niedziela
    Jarosław Wlazło
    Journal of Engineering Mathematics, 2018, 108 : 91 - 105
  • [39] Fractional-Order Variational Calculus with Generalized Boundary Conditions
    MohamedAE Herzallah
    Dumitru Baleanu
    Advances in Difference Equations, 2011
  • [40] Oscillation Results for Solutions of Fractional-Order Differential Equations
    Alzabut, Jehad
    Agarwal, Ravi P.
    Grace, Said R.
    Jonnalagadda, Jagan M.
    FRACTAL AND FRACTIONAL, 2022, 6 (09)