Analysis of solution trajectories of fractional-order systems

被引:0
|
作者
Madhuri Patil
Sachin Bhalekar
机构
[1] Shivaji University,Department of Mathematics
[2] University of Hyderabad,School of mathematics and statistics
来源
Pramana | 2020年 / 94卷
关键词
Fractional derivative; Mittag–Leffler functions; Orthogonal transformation; Frenet apparatus; 05.45.–a; 02.40.–k; 45.30.+s;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of solution trajectories usually changes if we replace the classical derivative in a system with a fractional one. In this article, we throw light on the relation between two trajectories X(t) and Y(t) of such a system, where the initial point Y(0) is at some point X(t1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(t_1)$$\end{document} of the trajectory X(t). In contrast with classical systems, these trajectories X and Y do not follow the same path. Further, we provide a Frenet apparatus for both trajectories in various cases and discuss their effect.
引用
收藏
相关论文
共 50 条
  • [21] Geometric Interpretation of Fractional-Order Derivative
    Vasily E. Tarasov
    Fractional Calculus and Applied Analysis, 2016, 19 : 1200 - 1221
  • [22] An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (5-6) : 1782 - 1786
  • [23] Global analysis of a fractional-order infection model for the propagation of computer viruses
    Yaagoub, Zakaria
    El Bhih, Amine
    Allali, Karam
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (01)
  • [24] Mathematical modeling of traveling autosolitons in fractional-order activator-inhibitor systems
    Datsko, B.
    Gafiychuk, V.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2018, 66 (04) : 411 - 418
  • [25] Design of Polynomial Observer-Based Control of Fractional-Order Power Systems
    Gassara, Hamdi
    Ammar, Imen Iben
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Rhaima, Mohamed
    MATHEMATICS, 2023, 11 (21)
  • [26] A Fractional Spline Collocation Method for the Fractional-order Logistic Equation
    Pitolli, Francesca
    Pezza, Laura
    APPROXIMATION THEORY XV, 2017, 201 : 307 - 318
  • [27] Dynamical behaviour of fractional-order finance system
    Farman, Muhammad
    Akguel, Ali
    Saleem, Muhammad Umer
    Imtiaz, Sumaiyah
    Ahmad, Aqeel
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [28] Explosive behaviors on coupled fractional-order system
    Liu, Shutong
    Sun, Zhongkui
    Yan, Luyao
    Zhao, Nannan
    Xu, Wei
    NONLINEAR DYNAMICS, 2022, 110 (03) : 2741 - 2751
  • [29] Dynamical behaviour of fractional-order finance system
    Muhammad Farman
    Ali Akgül
    Muhammad Umer Saleem
    Sumaiyah Imtiaz
    Aqeel Ahmad
    Pramana, 2020, 94
  • [30] Explosive behaviors on coupled fractional-order system
    Shutong Liu
    Zhongkui Sun
    Luyao Yan
    Nannan Zhao
    Wei Xu
    Nonlinear Dynamics, 2022, 110 : 2741 - 2751