Analysis of solution trajectories of fractional-order systems

被引:0
|
作者
Madhuri Patil
Sachin Bhalekar
机构
[1] Shivaji University,Department of Mathematics
[2] University of Hyderabad,School of mathematics and statistics
来源
Pramana | 2020年 / 94卷
关键词
Fractional derivative; Mittag–Leffler functions; Orthogonal transformation; Frenet apparatus; 05.45.–a; 02.40.–k; 45.30.+s;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of solution trajectories usually changes if we replace the classical derivative in a system with a fractional one. In this article, we throw light on the relation between two trajectories X(t) and Y(t) of such a system, where the initial point Y(0) is at some point X(t1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(t_1)$$\end{document} of the trajectory X(t). In contrast with classical systems, these trajectories X and Y do not follow the same path. Further, we provide a Frenet apparatus for both trajectories in various cases and discuss their effect.
引用
收藏
相关论文
共 50 条
  • [1] Analysis of solution trajectories of fractional-order systems
    Patil, Madhuri
    Bhalekar, Sachin
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [2] Game problems for fractional-order linear systems
    A. A. Chikrii
    I. I. Matichin
    Proceedings of the Steklov Institute of Mathematics, 2010, 268 : 54 - 70
  • [3] Game problems for fractional-order linear systems
    Chikrii, A. A.
    Matichin, I. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 268 : 54 - 70
  • [4] Game problems for fractional-order linear systems
    Chikrii, A. A.
    Matichin, I. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (03): : 262 - 278
  • [5] Fractional-order stability analysis of earthquake dynamics
    Pelap, F. B.
    Tanekou, G. B.
    Fogang, C. F.
    Kengne, R.
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (04) : 1673 - 1687
  • [6] Optimization of game interaction of fractional-order controlled systems
    Chikrii, Arkadii A.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (01): : 39 - 72
  • [7] Efficient solution of a wave equation with fractional-order dissipative terms
    Haddar, H.
    Li, J. -R
    Matignon, D.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) : 2003 - 2010
  • [8] Vibration Systems with Fractional-Order and Distributed-Order Derivatives Characterizing Viscoinertia
    Duan, Jun-Sheng
    Hu, Di-Chen
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [9] Chaotic behavior of a class of discontinuous dynamical systems of fractional-order
    Danca, Marius-F.
    NONLINEAR DYNAMICS, 2010, 60 (04) : 525 - 534
  • [10] Chaotic behavior of a class of discontinuous dynamical systems of fractional-order
    Marius-F. Danca
    Nonlinear Dynamics, 2010, 60 : 525 - 534