Density Estimation for RWRE

被引:0
作者
A. Havet
M. Lerasle
É. Moulines
机构
[1] CNRS Univ. Paris-Saclay,Centre de Math. Appl., École polytech.
[2] Univ. Paris-Sud,Laborat. Math. d’Orsay
[3] CNRS Univ. Paris-Saclay,undefined
来源
Mathematical Methods of Statistics | 2019年 / 28卷
关键词
random walk in random environment; nonparametric density estimation; adaptive estimation; oracle inequality; primary 62G07; secondary 60K37; 62M05; 62E17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of nonparametric density estimation of a random environment from the observation of a single trajectory of a random walk in this environment. We build several density estimators using the beta-moments of this distribution. Then we apply the Goldenschluger-Lepski method to select an estimator satisfying an oracle type inequality. We obtain non-asymptotic bounds for the supremum norm of these estimators that hold when the RWRE is recurrent or transient to the right. A simulation study supports our theoretical findings.
引用
收藏
页码:18 / 38
页数:20
相关论文
共 51 条
[1]  
Adelman O(2004)Random Walks in Random Environment: What a Single Trajectory Tells Israel J. Math. 142 205-220
[2]  
Enriquez N(2012)Experimental Free-Energy Measurements of Kinetic Molecular States Using Fluctuation Theorems Nat. Phys. 8 688-694
[3]  
Alemany A(2015)Hidden Markov Model for Parameter Estimation of a Random Walk in a Markov Environment ESAIM. Probab. and Statist. 19 605-625
[4]  
Mossa A(2010)Minimax Properties of Beta Kernel Density Estimators J. Statist. Planning and Inference 141 2287-2297
[5]  
Junier I(2014)Adaptive Estimation of a Density Function Using Beta Kernels ESAIM. Probability and Statistics 18 400-417
[6]  
Ritort F(2003)Consistency of the Beta Kernel Density Function Estimator Canadian J. Statist. 31 89-98
[7]  
Andreoletti P(1999)Beta Kernel Estimators for Density Functions Comput. Statist. and Data Anal. 31 131-145
[8]  
Loukianova D(1967)Replication of a Multicomponent Chain by the Lightning Mechanism Biofizika 12 297-301
[9]  
Matias C(2014)Maximum Likelihood Estimator Consistency for Ballistic Random Walk in a Parametric Random Environment Stochastic Processes and Their Applications 124 168-188
[10]  
Bertin K(2016)Maximum Likelihood Estimator Consistency for Recurrent Random Walk in a Parametric Random Environment with Finite Support Stochastic Processes and Their Applications 126 3578-3604