Simple models for strictly non-ergodic stochastic processes of macroscopic systems

被引:0
|
作者
G. George
L. Klochko
A. N. Semenov
J. Baschnagel
J. P. Wittmer
机构
[1] Université de Strasbourg & CNRS,Institut Charles Sadron
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate simple models for strictly non-ergodic stochastic processes xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_t$$\end{document} (t being the discrete time step) focusing on the expectation value v and the standard deviation δv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta v$$\end{document} of the empirical variance v[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v[\mathbf {x}]$$\end{document} of finite time series x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {x}$$\end{document}. xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_t$$\end{document} is averaged over a fluctuating field σr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathbf{r}}$$\end{document} (r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{r}$$\end{document} being the microcell position) characterized by a quenched spatially correlated Gaussian field gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}. Due to the quenched gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}-field δv(Δτ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta v(\varDelta \tau )$$\end{document} becomes a finite constant, Δne>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathrm {ne}}> 0$$\end{document}, for large sampling times Δτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \tau $$\end{document}. The volume dependence of the non-ergodicity parameter Δne\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathrm {ne}}$$\end{document} is investigated for different spatial correlations. Models with marginally long-ranged gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}-correlations are successfully mapped on shear stress data from simulated amorphous glasses of polydisperse beads.
引用
收藏
相关论文
共 50 条
  • [21] Effect of Ergodic and Non-Ergodic Fluctuations on a Charge Diffusing in a Stochastic Magnetic Field
    Aquino, Gerardo
    Chandia, Kristopher J.
    Bologna, Mauro
    ENTROPY, 2021, 23 (06)
  • [22] CONVERGENCE OF NON-ERGODIC DYNAMICAL-SYSTEMS
    KALLENBERG, O
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (03): : 329 - 351
  • [23] Ageing and confinement in non-ergodic heterogeneous diffusion processes
    Cherstvy, Andrey G.
    Chechkin, Aleksei V.
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (48)
  • [24] On non-ergodic infinite-state stochastic Petri nets
    Bause, F
    10TH INTERNATIONAL WORKSHOP ON PETRI NETS AND PERFORMANCE MODELS, PROCEEDINGS, 2003, : 84 - 92
  • [25] Viscoelastic processes in non-ergodic states (percolation and glass transitions) of attractive micellar systems
    Mallamace, F
    Broccio, M
    Tartaglia, P
    Chen, WR
    Faraone, A
    Chen, SH
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 330 (1-2) : 206 - 217
  • [26] STRICTLY ERGODIC MODELS FOR DYNAMICAL-SYSTEMS
    WEISS, B
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 13 (02) : 143 - 146
  • [27] Modes of a stellar system II: non-ergodic systems
    Lau, Jun Yan
    Binney, James
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (02) : 2562 - 2567
  • [28] Intrinsically weighted means and non-ergodic marked point processes
    Malinowski, Alexander
    Schlather, Martin
    Zhang, Zhengjun
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (01) : 1 - 24
  • [29] LP Based Bounds for Cesaro and Abel Limits of the Optimal Values in Non-ergodic Stochastic Systems
    Avrachenkov, Konstantin
    Gaitsgory, Vladimir
    Gamertsfelder, Lucas
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2444 - 2449
  • [30] Asymptotic behaviour of time averages for non-ergodic Gaussian processes
    Slezak, Jakub
    ANNALS OF PHYSICS, 2017, 383 : 285 - 311